Lipids exhibit a broad range of chemical properties that make their analysis quite demanding. Today, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) represents a versatile tool in the field of lipid analysis, also offering the possibility for molecular structural identification using novel MALDI tandem time-of-flight (TOF/TOF) instrumentation. In this study, we evaluated 2,4,6-trihydroxyacetophenone (THAP) for the analysis of various lipid classes including neutral storage lipids (triacylglycerols), polar membrane lipids (glycerophospho- and sphingolipids), and glycosphingolipids. THAP proved to be a versatile matrix for the routine analysis of various lipids from biological samples ("lipidomics"). A sample preparation methodology was established using selective alkali salt doping for subsequent MS/MS experiments. Sodiated and lithiated molecules provided superior structural information on lipids (i.e., acyl group identification); thus, following this approach, both selective peak detection with high sensitivity and more reliable structural information were obtained simultaneously.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac062236c | DOI Listing |
Neurosurgery
February 2025
Global Neurosciences Institute, Philadelphia , Pennsylvania , USA.
Background And Objectives: Despite growing interest in how patient frailty affects outcomes (eg, in neuro-oncology), its role after transsphenoidal surgery for Cushing disease (CD) remains unclear. We evaluated the effect of frailty on CD outcomes using the Registry of Adenomas of the Pituitary and Related Disorders (RAPID) data set from a collaboration of US academic pituitary centers.
Methods: Data on consecutive surgically treated patients with CD (2011-2023) were compiled using the 11-factor modified frailty index.
Discov Oncol
January 2025
Western Institute of Digital-Intelligent Medicine, 401329, Chongqing, China.
Background: The metabolism of stearoyl-GPE plays a key role in the liver metastasis of gastric cancer. This investigation delves into the mechanisms underlying the intricate tumor microenvironment (TME) heterogeneity triggered by stearoyl metabolism in gastric cancer with liver metastasis (LMGC), offering novel perspectives for LMGC.
Objective: Utilizing Mendelian randomization, we determined that stearoyl metabolism significantly contributes to the progression of gastric cancer (GC).
Mol Neurobiol
January 2025
Department of Neurology, School of Medicine, Affiliated ZhongDa Hospital, Southeast University, Dingjiaqiao 87, Nanjing, 210009, Jiangsu, China.
The dysregulation of lipid metabolism has been associated with the etiology and progression of the neurological pathology. However, the roles of lipid metabolism and the molecular mechanism in epilepsy and the use of antiepileptic drugs (AEDs) are relatively understudied. Gene expression profiles of GSE143272 from blood samples were included for differential analysis, and the lipid metabolism-related differentially expressed genes (DEGs) were identified.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
NMR Laboratory, Chemistry Department, University of Crete, Heraklion, Crete, Greece.
High Resolution-Magic Angle Spinning (HR-MAS) solid-state NMR spectroscopy is finding increasing application in the analysis of solid foods, bypassing the need for complicated solvent extraction procedures. In the present protocol, we report a simple analytical approach based on HR-MAS NMR spectroscopy for the phenolic profiling of olive fruits, flesh, or skin. This approach allows the facile characterization of phenolic compounds in olive fruits cultivated for extra-virgin olive oil production as a function of maturation and variety, in addition to processing technology for table olives.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy.
Trapped ion mobility spectrometry (TIMS) using parallel accumulation serial fragmentation (PASEF) is an advanced analytical technique that offers several advantages in mass spectrometry (MS)-based lipidomics. TIMS provides an additional dimension of separation to mass spectrometry and accurate collision cross-section (CCS) measurements for ions, aiding in the structural characterization of molecules. This is especially valuable in lipidomics for identifying and distinguishing isomeric or structurally similar compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!