Background: Epidemiologic studies suggest that there may be an association between environmental exposure to persistent organic pollutants (POPs) and diabetes.
Objective: The aim of this study was to test the hypothesis that residential proximity to POP-contaminated waste sites result in increased rates of hospitalization for diabetes.
Methods: We determined the number of hospitalized patients 25-74 years of age diagnosed with diabetes in New York State exclusive of New York City for the years 1993-2000. Descriptive statistics and negative binomial regression were used to compare diabetes hospitalization rates in individuals who resided in ZIP codes containing or abutting hazardous waste sites containing POPs ("POP" sites); ZIP codes containing hazardous waste sites but with wastes other than POPs ("other" sites); and ZIP codes without any identified hazardous waste sites ("clean" sites).
Results: Compared with the hospitalization rates for diabetes in clean sites, the rate ratios for diabetes discharges for people residing in POP sites and "other" sites, after adjustment for potential confounders were 1.23 [95% confidence interval (CI), 1.15-1.32] and 1.25 (95% CI, 1.16-1.34), respectively. In a subset of POP sites along the Hudson River, where there is higher income, less smoking, better diet, and more exercise, the rate ratio was 1.36 (95% CI, 1.26-1.47) compared to clean sites.
Conclusions: After controlling for major confounders, we found a statistically significant increase in the rate of hospitalization for diabetes among the population residing in the ZIP codes containing toxic waste sites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1797837 | PMC |
http://dx.doi.org/10.1289/ehp.9223 | DOI Listing |
Nanoscale
January 2025
School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
Gold nanoparticles (AuNPs) have been widely used as efficient and environmentally friendly catalysts due to their high specific surface area and abundant active sites. However, AuNP-based catalytic systems face several challenges, including the instability of AuNPs during the reaction, the difficulty in monitoring the process, which can easily result in insufficient reaction due to short reaction time or waste of resources due to long reaction time, as well as issues of catalyst recovery. This study proposes a novel catalyst integrating various functions, such as high stability, the capacity for real-time monitoring of the catalytic process, and rapid recycling.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Zoology and Environment Sciences, Faculty of Science, University of Colombo, Colombo, 03, Sri Lanka.
There is increasing scientific interest in the potential links between meditation practice and pro-environmental behaviours. The present research investigates relationships between meditation experience (temporal variables of meditation, five facets of trait mindfulness), positive lifestyle habits (PLH), quality of life (QoL) and per-head carbon footprint (CF) among 25 skilled meditators. Self-reported validated questionnaires were given to a group of native speakers of Sri Lanka to collect data on meditation experience, PLH, and perceived QoL.
View Article and Find Full Text PDFHeliyon
January 2025
Interdisciplinary Research Center for Construction and Building Materials, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
Urbanization and population growth in India have quickened, leading to an annual generation of around 62 million tonnes of municipal solid waste (MSW). Improper management of organic waste presents a major environmental problem due to air and water pollution, soil contamination and greenhouse gas production. This research aims to develop refuse-derived fuel (RDF) as a viable option, converting waste into a high-calorific energy carrier for industrial use.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Waste Science and Technology, Luleå University of Technology, Luleå, Sweden.
Improper management of wood impregnation chemicals and treated wood has led to soil contamination at many wood treatment sites, particularly with toxic substances like creosote oil and chromated copper arsenate (CCA). The simultaneous presence of these pollutants complicates the choice of soil remediation technologies, especially if they are to be applied in situ. In this laboratory study, we attempted to immobilise arsenic (As) and simultaneously degrade polycyclic aromatic hydrocarbons (PAHs) (constituents of creosote oil) by applying a modified electrochemical oxidation method.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, Faculty of Science, University of Maragheh P.O Box 55181-83111 Maragheh Iran.
In this study, we present the design, synthesis, and utilization of a covalent triazine framework (CTF) formed by the condensation of , , -tris(4-(aminomethyl)benzyl)-1,3,5-triazine-2,4,6-triamine and 2,4,6-tris(4-formylphenoxy)-1,3,5-triazine on which silica is immobilized (TPT-TAT/silica) as an innovative catalyst for porphyrins synthesis. Under solvothermal conditions, the condensation of triamine and trialdehyde precursors led to the formation of a covalent triazine framework (CTF) with a high nitrogen content. The resulting CTF is characterized by its extensive porosity and elevated nitrogen levels, which are critical for the creation of catalytic active sites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!