The objective of the present study was to develop "once daily" sustained release tablets of aceclofenac by direct compression using hydroxypropyl methylcellulose-K4M (HPMC). The solubility studies of aceclofenac were conducted to select suitable dissolution media. The drug-excipient mixtures were subjected to preformulation studies. The tablets were subjected to physicochemical, in vitro drug release and stability studies. Preclinical (anti-inflammatory, analgesic, pharmacokinetic and toxicity studies) and clinical pharmacokinetic studies were conducted for optimized tablets. Based on the preformulation results, microcrystalline cellulose (MCC), dicalcium phosphate and spray dried lactose (SDL) were selected as directly compressible vehicles. Because of the incompatibility with aceclofenac, SDL was excluded from the study. The physicochemical properties of tablets were found within the limits. By comparing the dissolution profiles with the marketed product, the tablet containing HPMC (45%) and MCC (30%) along with talc and magnesium stearate (1% w/w, each) (Tablet B7) was considered as a better formulation. This tablet exhibited almost similar drug release profile in different dissolution media as that of marketed tablet. Tablet B7 was stable in accelerated conditions for 6 months. The composition of this tablet showed almost similar preclinical pharmacological activities compared to marketed tablet composition and did not exhibit any toxicity in rats and mice with respect to tested haematological and biochemical parameters along with body weight, food and water intake. The pharmacokinetic study in healthy human volunteers indicated that B7 tablet produced an extended drug release of drug upto 24 h as that of marketed product with almost identical pharmacokinetic parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02977698 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
Porous silicon (pSi) has gained substantial attention as a versatile material for various biomedical applications due to its unique structural and functional properties. Initially used as a semiconductor material, pSi has transitioned into a bioactive platform, enabling its use in drug delivery systems, biosensing, tissue engineering scaffolds, and implantable devices. This review explores recent advancements in macrostructural pSi, emphasizing its biocompatibility, biodegradability, high surface area, and tunable properties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center of Biomedical Materials Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
Osteoporosis is a systemic metabolic disease that impairs bone remodeling by favoring osteoclastic resorption over osteoblastic formation. Nanotechnology-based therapeutic strategies focus on the delivery of drug molecules to either decrease bone resorption or increase bone formation rather than regulating the entire bone remodeling process, and osteoporosis interventions suffer from this limitation. Here, we present a multifunctional nanoparticle based on metal-phenolic networks (MPNs) for the treatment of systemic osteoporosis by regulating both osteoclasts and osteoblasts.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
Bacterial bots are potent vehicles in cancer theranostics where bacteria are used typically as cargos for drug delivery. However, living bacteria themselves may aid in their efficiency in killing the tissues. For example, living bacteria may be functionalized with magnetic and luminescent nanoparticles along with drugs in order to achieve the targeted delivery and release of payloads that would include the bacteria.
View Article and Find Full Text PDFDiabetes Metab
January 2025
Division of Diabetes, Nutrition and Metabolic Disorders, CHU Liège, Liège, Belgium; Division of Clinical Pharmacology, Centre for Interdisciplinary Research on Medicines (CIRM), Liège University, Liège, Belgium. Electronic address:
Background: Obesity is an increasing public health problem because of its high prevalence and associated morbidity and mortality. Two weight-loss strategies are currently used, either bariatric surgery or pharmacological therapy with glucagon-like peptide-1 receptor agonists (GLP-1RAs). Preclinical studies in rodents suggested an increased risk of additive disorders after bariatric surgery contrasting with a reduced risk with GLP-1RAs.
View Article and Find Full Text PDFDrug Alcohol Depend
January 2025
Fralin Biomedical Research Institute at Virginia Tech Carilion, 2 Riverside Circle, Roanoke, VA 24016, United States.
Background: Opioid use disorder (OUD) continues to pose a significant challenge to public health in the United States. Chronic pain and OUD are highly comorbid conditions, yet few studies have examined the relative associations of pain status and severity toward multidimensional OUD recovery outcomes (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!