The ability to integrate nutrient availability into cell cycle regulation is critical for the viability of organisms. The Saccharomyces cerevisiae ubiquitin ligase SCF(Grr1) regulates the stability of several proteins that participate in cell division or nutrient sensing. Two of its targets, the cyclins Cln1 and Cln2, accumulate in the presence of glucose. When glucose is added to cells growing asynchronously, we show that the accumulation of the cyclins is a very slow response. We report that the F-box protein Grr1 also accumulates at higher levels in the presence of glucose, and that the response to glucose follows a delayed pattern strikingly similar to that described for Cln1 and Cln2. A model for the regulation of F-box proteins predicts that substrate accumulation could stabilize Grr1. While we found that Grr1 is more stable in cells growing with glucose, we show that the delayed responses to glucose occur independently: Grr1 accumulates in the absence of the cyclins, and vice versa. Thus, our results indicate that this model might not apply to the cyclins and Grr1. Glucose is known to strengthen the interaction of Grr1 with Skp1 in the SCF complex. We hypothesize that glucose could promote the accumulation of Grr1 and its assembly into a SCF complex as a feedback regulation that helps compensate for higher cyclins levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/yea.1472 | DOI Listing |
Sci Transl Med
January 2025
Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
Children with neurodegenerative disease often have debilitating gastrointestinal symptoms. We hypothesized that this may be due at least in part to underappreciated degeneration of neurons in the enteric nervous system (ENS), the master regulator of bowel function. To test this hypothesis, we evaluated mouse models of neuronal ceroid lipofuscinosis type 1 and 2 (CLN1 and CLN2 disease, respectively), neurodegenerative lysosomal storage disorders caused by deficiencies in palmitoyl protein thioesterase-1 and tripeptidyl peptidase-1, respectively.
View Article and Find Full Text PDFPak J Med Sci
September 2024
Dr. Tipu Sultan University of Child Health Sciences, The Children's Hospital, Lahore, Pakistan.
Objective: To unravel the clinical and genetic specifications of Neuronal ceroid lipofuscinosis (NCL).
Methods: This is a retrospective cross-sectional study conducted in the Department of Pediatric Neurology Children Hospital and University of Child Health Sciences, Lahore, Pakistan from March 2017 to March 2022. The primary outcome was to measure genotype-phenotype correlation by segregation of phenotypes according to genotype.
Curr Biol
June 2024
Department of Biology, Stanford University, 327 Campus Dr., Stanford, CA 94305, USA; Chan Zuckerberg Biohub, 499 Illinois St., San Francisco, CA 94158, USA. Electronic address:
Progression through the cell cycle depends on the phosphorylation of key substrates by cyclin-dependent kinases. In budding yeast, these substrates include the transcriptional inhibitor Whi5 that regulates G1/S transition. In early G1 phase, Whi5 is hypo-phosphorylated and inhibits the Swi4/Swi6 (SBF) complex that promotes transcription of the cyclins CLN1 and CLN2.
View Article and Find Full Text PDFPediatr Neurol
March 2024
Division of Neurology, Nationwide Children's Hospital, Nationwide Children's Hospital Batten Disease Center for Excellence, The Ohio State University, Columbus, Ohio.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!