The disposition of [14C]methyltetrahydrofuran (14C-MTHF) in rats and mice was determined by following changes in the radioactivity in tissue and excreta with time after dosing. MTHF administered orally (1, 10, or 100 mg/kg) or intravenously (1 mg/kg) to either rats or mice was rapidly metabolized and excreted with <8% (mice) or 8-22% (rats) of the dose remaining in the body after 24 h (1 and 10 mg/kg doses) or 72 h (100 mg/kg dose). Based on recovery of radioactivity in excreta (other than feces) and tissues (other than the gastrointestinal [GI] tract), absorption of orally administered MTHF was essentially complete (93-100%). There were no overt signs of toxicity observed at any dose studied. The major route of excretion in mice was in urine followed by exhaled CO2. In rats the major route of excretion was exhaled CO2 followed by urinary excretion. The excretion of exhaled volatile organic compounds (VOC) was dose-dependent in both species; at lower doses exhaled VOC represented 1-5% of dose, but at the highest dose (100 mg/kg) this proportion rose to 14% (mice) and 27% (rats). Analysis of the VOCs exhaled at the high dose indicated that the increase was due to exhalation of the parent compound, 14C-MTHF. Analysis of urine showed three highly polar peaks in the mouse urine and two polar peaks in the rat urine. Because the 14C label in MTHF was in the methyl group, the polar metabolites were considered likely due to the one-carbon unit getting into the metabolic pool and labeling intermediate dietary metabolites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10937400600882848 | DOI Listing |
Int Immunopharmacol
December 2024
Department of Critical Care Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China. Electronic address:
Previous studies demonstrated that dexmedetomidine (Dex) posttreatment aggravated myocardial dysfunction and reduced survival in septic mice. Yet, whether Dex elicits similar effects in septic patients as defined by Sepsis-3 remains unknown. This study sought to assess the effects of Dex-based sedation on mortality and cardiac dysfunction in septic patients defined by Sepsis-3 and to further reveal the mechanisms in septic rats.
View Article and Find Full Text PDFInflammopharmacology
December 2024
Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan.
Juice and decoction of leaves of Suaeda fruticosa, a halophytic medicinal plant of Cholistan desert, is traditionally used to treat rheumatism. The current study was carried out to probe into in vivo anti-nociceptive, anti-inflammatory, and anti-arthritic potential of ethanolic extract of the whole plant of S. fruticosa (Et-SF) and its bioactive molecules.
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
December 2024
OOO NBC «Pharmbiomed», Moscow, Russia.
Objective: To evaluate the toxic effects of the agent Relatox on mature outbred rats and mice in an acute experiment in comparison with the registered analogue Dysport.
Material And Methods: Based on the aim of experiment, the acute toxic effects of Relatox and Dysport were assessed on two animal species: rats and mice at intraperitoneal and intramuscular administration at dose levels that made it possible to calculate the toxicological parameter values (initially 10-150 U/kg with subsequent usage of additional doses 20 U/kg to 300 U/kg depending on the agent and route of administration). The LD values and other acute toxic parameters were calculated using probit analysis.
Lab Anim Res
December 2024
Department of Experimental Animal Research, Biomedical Research Institute, Seoul National Univ. Hospital, Seoul, Korea.
Background: Genetically immunodeficient mice lacking Il2rg and Rag2 genes have been widely utilized in the field of biomedical research. However, immunodeficient rats, which offer the advantage of larger size, have not been as extensively used to date. Recently, Severe Combined Immunodeficiency (SCID) rats were generated using CRISPR/Cas9 system, targeting Il2rg and Rag2 in National BioResource Project in Japan.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
Key Laboratory of Special Environmental Medicine of Xinjiang, General Hospital of Xinjiang Military Command, No. 359, Youhao North Road, Urumqi, Xinjiang, China.
Objective: This study aims to elucidate the mechanisms by which nanovesicles (NVs) transport curcumin(CUR) across the blood-brain barrier to treat hypothalamic neural damage induced by heat stroke by regulating the expression of poly(c)-binding protein 2 (PCBP2).
Methods: Initially, NVs were prepared from macrophages using a continuous extrusion method. Subsequently, CUR was loaded into NVs using sonication, yielding engineered cell membrane Nanovesicles loaded with curcumin (NVs-CUR), which were characterized and subjected to in vitro and in vivo tracking analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!