As epidemiological work from around the world continues to tie PM2.5 to serious adverse health effects, including premature mortality, the U.S. Environmental Protection Agency (U.S. EPA) has developed a number of policies to reduce air pollution, including PM2.5. To assist in the benefit-cost analyses of these air pollution control policies, the U.S. EPA has developed the Environmental Benefits Mapping and Analysis Program (BenMAP). BenMAP is meant to (1) provide a flexible tool for systematically analyzing impacts of changes in environmental quality in a timely fashion, (2) ensure that stakeholders can understand the assumptions underlying the analysis, and (3) adequately address uncertainty and variability. BenMAP uses a "damage-function" approach to estimate the health benefits of a change in air quality. The major components of the damage-function approach are population estimates, population exposure, adverse health effects, and economic costs. To demonstrate BenMAP's ability to analyze PM2.5 pollution control policy scenarios, we assess two sample applications: (1) benefits of a national-level air quality control program, and (2) benefits of attaining two annual PM2.5 standards in California (annual average standards of 15 microg/m3 and 12 microg/m3). In the former, we estimate a scenario where control of PM2.5 emissions results in $100 billion of benefits annually. In the analysis of alternative standards, we estimate that attaining the more stringent standard (12 microg/m3) would result in approximately 2000 fewer premature deaths each year than the 15 microg/m3 achieves. BenMAP has a number of features to help clarify the analysis process. It allows the user to record in a configuration all of the choices made during an analysis. Configurations are especially useful for recreating already existing policy analyses. Also, BenMAP has a number of reporting options, including a set of mapping tools that allows users to visually inspect their inputs and results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15287390600884982 | DOI Listing |
JMIR Med Educ
January 2025
Centre for Digital Transformation of Health, University of Melbourne, Carlton, Australia.
Background: Learning health systems (LHS) have the potential to use health data in real time through rapid and continuous cycles of data interrogation, implementing insights to practice, feedback, and practice change. However, there is a lack of an appropriately skilled interprofessional informatics workforce that can leverage knowledge to design innovative solutions. Therefore, there is a need to develop tailored professional development training in digital health, to foster skilled interprofessional learning communities in the health care workforce in Australia.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Oceanography and Coastal Sciences, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA, United States of America.
As a key determinant of how efficiently lionfish ( sp.) locate and capture prey, swimming speed plays a crucial role in shaping the predator-prey interactions and broader ecological dynamics within the invaded ecosystems. Swimming speed on a small temporal and spatial scale is difficult to measure because of the need for precise measurements of both distance and duration of the behavior.
View Article and Find Full Text PDFMethodsX
June 2025
Departamento de Enfermagem, Universidade de Évora, Évora 7000-811, Portugal.
is a pedagogical technique that replicates real-world scenarios in a controlled environment, enabling nursing students to engage in the teaching-learning process actively. While simulated practice is a growing pedagogical strategy, several studies have examined its strengths and limitations. However, evidence of its effectiveness in developing clinical reasoning skills among nursing students still needs to be improved.
View Article and Find Full Text PDFToxicol Res (Camb)
February 2025
Department of chemistry, Emerson University Multan, Multan 60000, Pakistan.
Since the Industrial Revolution, ecological damage, ecosystem disruption, and climate change acceleration have frequently resulted from human advancement at the price of the environment. Due to the rise in illnesses, Industry 6.0 calls for a renewed dedication to sustainability with latest technologies.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, BOKU University of Natural Resources and Life Sciences Vienna, Tulln an der Donau, Austria.
The number of metal-containing waste streams resulting from electronic end-of life products, metallurgical by-products, and mine tailings to name but a few, is increasing worldwide. In recent decades, the potential to exploit these waste streams as valuable secondary resources to meet the high demand of critical and economically important raw materials has become more prominent. In this review, fundamental principles of bio-based metal recovery technologies are discussed focusing on microbial metabolism-dependent and metabolism-independent mechanisms as sustainable alternatives to conventional chemical metal recovery methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!