Mathematical modeling is a potent in silico tool that can help investigate, interpret, and predict the behavior of biological systems. The first step is to develop a working hypothesis of the biology. Then by "translating" the biological phenomena into equations, models can harness the power of mathematical analysis techniques to explore the dynamics and interactions of the biological components. Models can be used together with traditional experimental models to help design new experiments, test hypotheses, identify mechanisms, and predict outcomes. This article reviews the process of building, calibrating, and using mathematical models in the context of the kinetics of receptor and signal transduction biology. An example model related to the androgen receptor-mediated regulation of the prostate is presented to illustrate the steps in the modeling process and to highlight the potential for mathematical modeling in this area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10799890601069980 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!