A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Decomposition of phorate in aqueous solution by ozonation. | LitMetric

Decomposition of phorate in aqueous solution by ozonation.

J Environ Sci Health B

Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.

Published: February 2007

Phorate (O,O-diethyl S-ethylthiomethyl phosphorodithioate) dissolved in aqueous solution was almost completely decomposed by ozonation to form various species within 10 minutes of reaction time for the experimental conditions examined in this research. The generation rate of sulfate was found to be fairly independent of solution pH value. However, the formation of phosphate and carbonate was more favorable for alkaline solutions where hydroxyl free radical is the primary oxidative species. The reaction rates increased with initial gaseous ozone concentrations, indicating the reaction was mass transfer-controlled within the experimental range of this research. Combining the analytical results by various instruments, including gas chromatograph equipped with an electron ionization detector (GC-EID), high performance liquid chromatography (HPLC), ion chromatography (IC), and total organic carbon (TOC), the temporal sequence of phorate ozonation was proposed in this study. The oxidation of sulfur atoms on the phosphorus-sulfur double bond or carbon-sulfur-carbon bond by ozonation was found to occur at first to form sulfate and various intermediates.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03601230601123268DOI Listing

Publication Analysis

Top Keywords

aqueous solution
8
decomposition phorate
4
phorate aqueous
4
ozonation
4
solution ozonation
4
ozonation phorate
4
phorate oo-diethyl
4
oo-diethyl s-ethylthiomethyl
4
s-ethylthiomethyl phosphorodithioate
4
phosphorodithioate dissolved
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!