The objectives of this study were to solubilize oxytetracycline hydrochloride (HCl) in reverse micelles to prepare poly-d,l-lactide-co-glycolide (PLGA) microspheres and to explore parameters affecting its encapsulation efficiency. Oxytetracycline HCl was dissolved in the reverse micelles consisting of cetyltrimethylammonium bromide, water, and ethyl formate. A PLGA polymer was then dissolved in the reverse micellar solution, and a modified solvent quenching procedure was carried out to prepare PLGA microspheres. Encapsulation efficiencies of oxytetracycline HCl ranged from 2.3 +/- 0.2 to 24.9 +/- 4.6%, depending on experimental conditions. Important parameters affecting its encapsulation efficiency included the amounts of water used to prepare the reverse micelles and PLGA polymer. With regard to microsphere morphology, the reverse micellar process produced the microspheres with smooth and pore-free surfaces. In particular, their internal matrices did not possess hollow cavities that were frequently observed when a typical double emulsion technique was used to make microspheres. In summary, it was possible to encapsulate oxytetracycline HCl into PLGA microspheres via the ethyl formate-based reverse micellar technique. We also anticipate that the use of ethyl formate could avoid environmental and human toxicity issues associated with methylene chloride.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10717540600740045DOI Listing

Publication Analysis

Top Keywords

reverse micelles
12
plga microspheres
12
oxytetracycline hcl
12
reverse micellar
12
oxytetracycline hydrochloride
8
parameters encapsulation
8
encapsulation efficiency
8
dissolved reverse
8
ethyl formate
8
plga polymer
8

Similar Publications

This study investigates the effects of homopolymer additives and kinetic traps on the self-assembly of poly(ethylene glycol)-b-poly(lactide) (PEG-PLA) block copolymer (BCP) nanostructures in aqueous environments. By using non-adsorbing PEG homopolymers to kinetically trap PEG-PLA nanostructures, we demonstrate that varying the concentration and molecular weight of the added PEG induces a reversible micelle-to-vesicle transition. This transition is primarily driven by changes in the molecular geometry of the PEG-PLA BCPs due to excluded volume screening effects.

View Article and Find Full Text PDF

Manipulating Toughness and Microstructure in Polyelectrolyte Complex Hydrogels with Competitive Surfactant Micelles.

Langmuir

December 2024

Key Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, China.

Polyelectrolyte complex (PEC) hydrogels provide a promising strategy to develop a class of physically cross-linked networks characterized by exceptional toughness and self-healing properties. However, the precise control of the microstructure and the enhancement of mechanical properties still pose challenges in the field of PEC hydrogels. Herein, we propose a strategy to manipulate the structure of PEC with competitively charged surfactant micelles, leveraging the spatially confined surface charge and excluded volume effects to overcome coacervation issues associated with the PEC, thus achieving a simple one-step preparation of macroscopically uniform and tough PEC hydrogels.

View Article and Find Full Text PDF

Micellar liquid chromatography (MLC) has proven beneficial efficiency and ecological impact for routine quality control activities. In the proposed study, cyrene was investigated for the first time, together with other green additives, as a novel safe organic solvent in reversed-phase MLC. Quality-by-design (QbD) approach screened their effect on the separation performance.

View Article and Find Full Text PDF

Where do the pyrene molecules reside within the surface active ionic liquid micelles in presence of sodium alginate?

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry, Presidency University, Kolkata 700073, India. Electronic address:

Pyrene fluorescence in aqueous solutions of two surface active ionic liquids, namely, 1-decyl-3-methylimidazolium chloride, and 1-hexadecyl-3-methylimidazolium chloride was investigated in presence of a biopolymer sodium alginate. The principal objective of this study was to explore the influence of the length of the hydrocarbon tails of these surface active ionic liquids on the possible location of the probe (pyrene) molecules in presence of the additive. While an abrupt decrease in the values of the ratio of the intensity of the first vibronic band to that of the third band of pyrene emission spectrum with concentration was observed for 1-hexadecyl-3-methylimidazolium chloride in presence of sodium alginate like the polymer-free case reported earlier, there was a peculiar reversal for 1-decyl-3-methylimidazolium chloride + sodium alginate.

View Article and Find Full Text PDF

The objective of this study was to investigate the antioxidant mechanism of action of fucoidan in sunflower oil and its oil-in-water emulsion. In addition, the effect of lecithin on the antioxidant mechanism of action of fucoidan in sunflower oil was investigated. In sunflower oil, fucoidan at 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!