This article describes the development of nanostructured lipid carriers (NLC) as colloidal carriers for two antitumor compounds that possess a remarkable antineoplastic activity. But their limited stability and low solubility in water could give a very low parenteral bioavailability. Results revealed an enhancement of the cytotoxicity effect of drug-loaded NLC on human prostate cancer (PC-3) and human hepatocellular carcinoma (HuH-6, HuH-7) cell lines with respect to that of both free drugs. Results of characterization studies strongly support the potential application of these drugs-loaded NLC as prolonged delivery systems for lipophilic drugs by several administration routes, in particular for intravenous administration.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10717540600739914DOI Listing

Publication Analysis

Top Keywords

nanostructured lipid
8
lipid carriers-containing
4
carriers-containing anticancer
4
anticancer compounds
4
compounds preparation
4
preparation characterization
4
characterization cytotoxicity
4
cytotoxicity studies
4
studies article
4
article describes
4

Similar Publications

This study provides a comprehensive investigation of antimicrobial additives (ZnO/AgNPs and SiO/AgNPs) on the properties of biodegradable ternary blends composed of poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL) by examining the morphology, thermal stability, crystallinity index, and cell viability of these blends. Overall, transmission electron microscopy (TEM) analysis revealed that AgNPs and SiO exhibited comparable sizes, whereas ZnO was significantly larger, which influences their release profiles and interactions with the blends. The addition of antimicrobials influences the rheology of the blends, acting as compatibilizers by reducing the intermolecular forces between biopolymers.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

University of Fribourg, Adolphe Merkle Institute, Fribourg, Switzerland.

Background: Tau protein phosphorylation and aggregation are the pathological hallmarks of Alzheimer's disease (AD) and other tauopathies. Multiple phosphorylation sites in Tau protein at serine (S), threonine (T), and tyrosine result in high heterogeneity and enhanced aggregation kinetics.

Method: Here, we used nanopores coated with a fluid lipid bilayer to characterize native and hyperphosphorylated Tau proteins on a single-molecule level.

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

IMDEA Nanociencia, Madrid, Spain.

Background: About half of the patients suffering from Alzheimer's disease (AD) display sleeping disorders. Disruptions in the central circadian clock (CC), located in the brain, accelerate AD pathogenesis, making the CC a promising target. In preclinical trials, this strategy have shown efficacy but clinical results are inconsistent.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, NSW, Australia.

Background: Alzheimer's Disease (AD) poses a substantial global health burden, necessitating innovative therapeutic strategies. This study investigates the neuroprotective potential of a chrysin-loaded Nanostructured Lipid Carrier (NLC) drug delivery system in AD management. Employing the high-pressure homogenization method, chrysin-loaded NLCs were meticulously formulated to optimize drug delivery efficiency.

View Article and Find Full Text PDF

The intracellular delivery of peptides and proteins is crucial for various biomedical applications. Lipid nanoparticles (LNPs) have emerged as a promising strategy for delivering peptides to phagocytic cells. However, the diverse physicochemical properties of peptides necessitate tailored formulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!