The purpose of this study was to examine the relationships between patterns of spelling error and related linguistic abilities of four persons with complex communication needs and physical impairments, compared to younger individuals without disabilities matched by spelling age. All participants completed a variety of spelling and linguistic tasks to determine overall spelling age, patterns of spelling errors, and abilities across phonemic, orthographic, and morphological awareness. Performance of the spelling-age matched pairs was similar across most of the phonemic, orthographic, and morphological awareness tasks. Analysis of the participants' spelling errors, however, revealed different patterns of spelling errors for three of the spelling-age matched pairs. Within these three pairs, the participants with complex communication needs and physical impairments made most of their spelling errors due to phonemic awareness difficulties, while most of the errors on the part of the participants without disabilities were due to orthographic difficulties. The results of this study lend support to the findings of previous investigations that reported difficulties among individuals with complex communication needs and physical impairments evidence when applying phonemic knowledge to literacy tasks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07434610600802737 | DOI Listing |
Nature
January 2025
The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.
The development of the human neocortex is highly dynamic, involving complex cellular trajectories controlled by gene regulation. Here we collected paired single-nucleus chromatin accessibility and transcriptome data from 38 human neocortical samples encompassing both the prefrontal cortex and the primary visual cortex. These samples span five main developmental stages, ranging from the first trimester to adolescence.
View Article and Find Full Text PDFNat Rev Neurol
January 2025
Sleep Research Centre, Oasi Research Institute - IRCCS, Troina, Italy.
Sleep is essential for brain development and overall health, particularly in children with neurodevelopmental disorders (NDDs). Sleep disruptions can considerably impact brain structure and function, leading to dysfunction of neurotransmitter systems, metabolism, hormonal balance and inflammatory processes, potentially contributing to the pathophysiology of NDDs. This Review examines the prevalence, types and mechanisms of sleep disturbances in children with NDDs, including autism spectrum disorder, attention-deficit hyperactivity disorder and various genetic syndromes.
View Article and Find Full Text PDFNat Commun
January 2025
Advanced Manufacturing and Metamaterials Laboratory, Department of Material Science and Engineering, University of California, Berkeley, CA, USA.
The demand for lightweight antennas in 5 G/6 G communication, wearables, and aerospace applications is rapidly growing. However, standard manufacturing techniques are limited in structural complexity and easy integration of multiple material classes. Here we introduce charge programmed multi-material additive manufacturing platform, offering unparalleled flexibility in antenna design and the capability for rapid printing of intricate antenna structures that are unprecedented or necessitate a series of fabrication routes.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain.
In three-dimensional (3D)-printed tissue models, sensitive, noninvasive techniques are required to detect changes in hydrogel structure caused by cellular remodeling. We demonstrate herein that circular dichroism (CD) spectroscopy provides a reliable method for detecting hydrogel structural variations. We probe directly the plasmonic optical activity of chiral gold nanorods (c-AuNRs) embedded within the hydrogel matrix, in response to variations in the local environment.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
January 2025
Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, Chimie de la Matière Complexe, Université de Strasbourg-CNRS 4, Rue Blaise Pascal, 67081 Strasbourg, France; Institut universitaire de France (IUF), France. Electronic address:
The reduction of oxygen to water is crucial to life under aerobic conditions. Cytochrome bd oxidases perform this reaction with a very high oxygen affinity. Members of this protein family are solely found in prokaryotes and some archaea playing an important role in bacterial virulence and antibiotic resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!