AI Article Synopsis

  • Tubules are essential structures in epithelial organs, and their formation is triggered by morphogens like hepatocyte growth factor (HGF).
  • Research using three-dimensional cell cultures has identified ARF6 GTPase as a key player in the initial growth of these tubules in response to HGF.
  • Manipulating ARF6 activity affects tubule development by altering the distribution of another GTPase, Rac1, and activating ERK signaling, which is crucial for early tubule formation.

Article Abstract

Tubules are the building blocks of epithelial organs and form in response to cues derived from morphogens such as hepatocyte growth factor (HGF). Relatively little is known about signaling pathways that orchestrate the cellular behaviors that constitute tubule development. Here, using three-dimensional cell cultures of Madin-Darby canine kidney cells, we show that the ARF6 GTPase is a critical determinant of tubule initiation in response to HGF. ARF6 is transiently activated during tubulogenesis and perturbing the ARF6 GTP/GDP cycle by inducible expression of ARF6 mutants defective in GTP binding or hydrolysis, inhibits the development of mature tubules. Further, we show that activation of ARF6 is necessary and sufficient to initiate tubule extension. The effect of ARF6 on tubule initiation is two-fold. First, ARF6 regulates the subcellular distribution of the GTPase, Rac1, to tubule extensions. Second, ARF6-induced ERK activation regulates Rac1 activation during tubule initiation through the expression of the receptor for urokinase type plasminogen activator. Thus, we have identified a cellular apparatus downstream of ARF6 activation, which regulates membrane and cytoskeleton remodeling necessary for the early stages of tubule development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1847670PMC
http://dx.doi.org/10.1038/sj.emboj.7601644DOI Listing

Publication Analysis

Top Keywords

tubule development
12
tubule initiation
12
tubule
8
arf6
8
activation regulates
8
arf6-dependent activation
4
activation erk
4
erk rac1
4
rac1 modulates
4
modulates epithelial
4

Similar Publications

Migrasome formation is initiated preferentially in tubular junctions by membrane tension.

Biophys J

January 2025

Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel. Electronic address:

Migrasomes, the vesicle-like membrane micro-structures, arise on the retraction fibers (RFs), the branched nano-tubules pulled out of cell plasma membranes during cell migration and shaped by membrane tension. Migrasomes form in two steps: a local RF bulging is followed by a protein-dependent stabilization of the emerging spherical bulge. Here we addressed theoretically and experimentally the previously unexplored mechanism of bulging of membrane tubular systems.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is the most common histologic type of RCC. However, the spatial and functional heterogeneity of immunosuppressive cells and the mechanisms by which their interactions promote immunosuppression in the ccRCC have not been thoroughly investigated.

Methods: To further investigate the cellular and regional heterogeneity of ccRCC, we analyzed single-cell and spatial transcriptome RNA sequencing data from four patients, which were obtained from samples from multiple regions, including the tumor core, tumor-normal interface, and distal normal tissue.

View Article and Find Full Text PDF

Molecular mechanisms of libido influencing semen quality in geese through the hypothalamic-pituitary-testicular-external genitalia axis.

Poult Sci

December 2024

Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China. Electronic address:

Libido plays a crucial role in influencing semen quality, yet the underlying regulatory mechanisms remain unclear. As a central axis in male goose reproduction, the hypothalamic-pituitary-testicular-external genitalia (HPTE) axis may contribute to the regulation of this process. In this study, we established a rating scale for goose libido based on average number of massages to erection (ANM) and the erection type, and evaluated semen quality across the entire flock.

View Article and Find Full Text PDF

An exchangeable SIM probe for monitoring organellar dynamics of necrosis cells and intracellular water heterogeneity in kidney repair.

Proc Natl Acad Sci U S A

January 2025

Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China.

Monitoring subcellular organelle dynamics in real time and precisely assessing membrane heterogeneity in living cells are very important for studying fundamental biological mechanisms and gaining a comprehensive understanding of cellular processes. However, there remains a shortage of effective tools for these purposes. Herein, we propose a strategy to develop the exchangeable water-sensing probeAPBD for time-lapse imaging of dynamics in cellular membrane-bound organelle morphology with structured illumination microscopy at the nanoscale.

View Article and Find Full Text PDF

Background: Tubular injury triggered by hyperglycemia is an important pathological characteristic in diabetic nephropathy (DN). Accumulated advanced glycation end products and their precursor methylglyoxal (MGO), contribute to the development of DN. Carnosine has been shown to prevent the development of DN but the underlying mechanism still needs to be studied in depth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!