The current-induced motion of magnetic domain walls confined to nanostructures is of interest for applications in magnetoelectronic devices in which the domain wall serves as the logic gate or memory element. The injection of spin-polarized current below a threshold value through a domain wall confined to a pinning potential results in its precessional motion within the potential well. We show that by using a short train of current pulses, whose length and spacing are tuned to this precession frequency, the domain wall's oscillations can be resonantly amplified. This makes possible the motion of domain walls with much reduced currents, more than five times smaller than in the absence of resonant amplification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1137662 | DOI Listing |
Background And Objective: Lipedema is a commonly underdiagnosed chronic condition. This study aimed to evaluate liposuction techniques for lipedema by conducting a systematic review and presenting our experience. A case series study and a comprehensive review were conducted.
View Article and Find Full Text PDFIn this study, we investigated in detail the regulation mechanism of electron transfer under laser-induced breakdown (LIB) on weak O-D stimulated Raman scattering (SRS) in DMSO-DO solutions. Significantly, the Raman activity of O-D vibrations was greatly enhanced by two orders of magnitude due to electron transfer in DMSO molecules. Density functional theory (DFT) calculations showed that the O-D Raman activity was significantly enhanced in the DMSO-DO dimer compared to the DO dimer.
View Article and Find Full Text PDFThe extreme electromagnetic near-field environment of nanoplasmonic resonators and metamaterials can give rise to unprecedented electromagnetic heating effects, enabling large and manipulable temperature gradients on the order of 10-10 K/nm. In this Letter, by interfacing traditional semiconductor quantum dots with industry-grade plasmonic transducer technology, we demonstrate that the near-field-induced thermal gradient can facilitate the requisite population inversion for coherent phonon amplification and lasing at the nanoscale. Our detailed analysis uncovers both the characteristics and parameter sensitivity of inversion and relaxation oscillations in the system, thereby unveiling hitherto unexplored opportunities for leveraging plasmonic near-field effects in the context of quantum thermodynamics and phononics.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China.
The flextensional transducer (FT) is a typical low-frequency transmitting transducer that is capable of high-power operation due to its capacity for displacement amplification. This article uses the structural configuration of the class IV FT as the basis for designing a ring transducer, which is a circular structure comprising a multitude of class IV flextensional structures as well as circular acoustic radiation structures. The flextensional structure drives the circular acoustic radiation structure, which in turn generates sound waves at low frequencies.
View Article and Find Full Text PDFTalanta
January 2025
Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95122, Catania, Italy; INBB, Istituto Nazionale di Biostrutture e Biosistemi, Viale delle Medaglie d'Oro, 305, 00136, Roma, Italy. Electronic address:
Directly detecting biomarkers in liquid biopsy for diagnosis and personalized treatment plays a crucial role in managing cancer relapse and increasing survival rates. Typically, the standard analysis of circulating tumour DNA requires lengthy isolation, extraction, and amplification steps, leading to sample contamination, longer turnaround time and higher assay costs. Surface plasmon resonance is an emerging and promising technology for rapid and real-time dynamic biomarker monitoring in liquid biopsy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!