Heterotrimeric G proteins play a central role in intracellular communication mediated by extracellular signals, and both Galpha and Gbetagamma subunits regulate effectors downstream of activated receptors. The particular constituents of the G protein heterotrimer affect both specificity and efficiency of signal transduction. However, little is known about mechanistic aspects of G protein assembly in the cell that would certainly contribute to formation of heterotrimers of specific composition. It was recently shown that phosducin-like protein (PhLP) modulated both Gbetagamma expression and subsequent signaling by chaperoning nascent Gbeta and facilitating heterodimer formation with Ggamma subunits (Lukov, G. L., Hu, T., McLaughlin, J. N., Hamm, H. E., and Willardson, B. M. (2005) EMBO J. 24, 1965-1975; Humrich, J., Bermel, C., Bunemann, M., Harmark, L., Frost, R., Quitterer, U., and Lohse, M. J. (2005) J. Biol. Chem. 280, 20042-20050). Here we demonstrate using a variety of techniques that DRiP78, an endoplasmic reticulum resident protein known to regulate the trafficking of several seven transmembrane receptors, interacts specifically with the Ggamma subunit but not Gbeta or Galpha subunits. Furthermore, we demonstrate that DRiP78 and the Gbeta subunit can compete for the Ggamma subunit. DRiP78 also protects Ggamma from degradation until a stable partner such as Gbeta is provided. Furthermore, DRiP78 interaction may represent a mechanism for assembly of specific Gbetagamma heterodimers, as selectivity was observed among Ggamma isoforms for interaction with DRiP78 depending on the presence of particular Gbeta subunits. Interestingly, we could detect an interaction between DRiP78 and PhLP, suggesting a role of DRiP78 in the assembly of Gbetagamma by linking Ggamma to PhLP.Gbeta complexes. Our results, therefore, suggest a role of DRiP78 as a chaperone in the assembly of Gbetagamma subunits of the G protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M608846200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!