Enzymatic synthesis of capsaicin analogs and their effect on the T-type Ca2+ channels.

Biochem Biophys Res Commun

Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, CP 62210, Mexico.

Published: May 2007

Capsaicin (Cap) and its analogs (CAPanalogs) have diverse effects in sensory neurons including analgesia, implying they modulate other cellular targets besides the TRPV1 Cap receptor. Since Cap and CAPanalogs are not largely available and their chemical synthesis is cumbersome, they have been obtained through a direct lipase-catalyzed reaction. Capsiate, the ester CAPanalog, was synthesized using a novel enzymatic transacylation one-pot strategy. Five different CAPanalogs were synthesized by amidation in 2-methyl-2-butanol with higher yields than previously reported. Voltage-dependent Ca(2+) channels (Ca(v)s) are among the main Ca(2+) entry paths into cells. They are classified as high-voltage-activated Ca(2+) channels (HVA) and low-voltage-activated Ca(2+) channels (LVA) constituted only by T-type channels. Though HVA Ca(v)s are Cap sensitive, it is not known if capsaicinoids inhibit LVA Ca(v)s which participate in the primary sensory neuron pain pathway. Here we first report that Cap, dihydrocapsaicin, N-VAMC(8), N-VAMC(9), and N-VAMC(10) can directly and partially reversibly inhibit T-type Ca(v)s, whereas olvanil, capsiate, and vanillylamine cannot. The Cap inhibition of T-type Ca(v)s was independent of TRPV1 activation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2007.02.144DOI Listing

Publication Analysis

Top Keywords

ca2+ channels
16
channels hva
8
t-type cavs
8
cap
6
ca2+
5
channels
5
cavs
5
enzymatic synthesis
4
synthesis capsaicin
4
capsaicin analogs
4

Similar Publications

Mechanisms of dual modulatory effects of spermine on the mitochondrial calcium uniporter complex.

J Biol Chem

January 2025

Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903. Electronic address:

The mitochondrial Ca uniporter is the Ca channel responsible for mitochondrial Ca uptake. It plays crucial physiological roles in regulating oxidative phosphorylation, intracellular Ca signaling, and cell death. The uniporter contains the pore-forming MCU subunit, the auxiliary EMRE protein, and the regulatory MICU1 subunit, which blocks the MCU pore under resting cellular Ca concentrations.

View Article and Find Full Text PDF

Plants deploy cellular Ca2+ elevation as a signal for environmental stress signaling. Extracellular ATP (eATP) is released into the extracellular matrix when cells are wounded. DOES NOT RESPOND TO NUCLEOTIDES 1 (DORN1), a key legume-type lectin receptor, senses and binds eATP and activates Ca2+ signaling.

View Article and Find Full Text PDF

Reactive astrogliosis and acidosis, common features of epileptogenic lesions, express a high level of astrocytic acid-sensing ion channel-1a (ASIC1a), a proton-gated cation channel and key mediator of responses to neuronal injury. This study investigates the role of astrocytic ASIC1a in cognitive impairment following epilepsy. Status epilepticus (SE) in C57/BL6 mice was induced using lithium-pilocarpine; the impact of ASIC1a on astrocytes was assessed using rAAV-ASIC1a-NC and rAAV-ASIC1a-shRNA, injected in the CA3 region of mice.

View Article and Find Full Text PDF

Transient Receptor Potential Melastatin 8 (TRPM8) is a non-selective, Ca-permeable cation channel involved in thermoregulation and other physiological processes, such as basal tear secretion, cell differentiation, and insulin homeostasis. The activation and deactivation of TRPM8 occur through genetic modifications, channel interactions, and signaling cascades. Recent evidence suggests a significant role of TRPM8 in the hypothalamus and amygdala related to pain sensation and sexual behavior.

View Article and Find Full Text PDF

The integrity of the filtration barrier of the kidney relies on the proper composition of podocyte interdigitating foot processes. Their architecture is supported by a complex actin-cytoskeleton. Following podocyte stress or injury, podocytes encounter structural changes, including rearrangement of the actin network and subsequent effacement of the foot processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!