We have investigated the electrochemical synthetic mechanism of conductive polymer nanotubes in a porous alumina template using poly(3,4-ethylenedioxythiophene) (PEDOT) as a model compound. As a function of monomer concentration and potential, electropolymerization leads either to solid nanowires or to hollow nanotubes, and it is the purpose of these investigations to uncover the detailed mechanism underlying this morphological transition between nanowire and nanotube. Transmission electron microscopy was used to characterize electrochemically synthesized PEDOT nanostructures and measure the extent of their nanotubular portion quantitatively. The study on potential dependency of nanotubular portion shows that nanotubes are grown at a low oxidation potential (1.2 V vs Ag/AgCl) regardless of monomer concentration. This phenomenon is attributed to the predominance of electrochemically active sites on the annular-shape electrode at the pore bottom of a template. The explanation was supported by a further electrochemical study on a flat-top electrode. We elaborate the mechanism by taking into account the effect of electrolyte concentration, temperature, and template pore diameter on PEDOT nanostructures. This mechanism is further employed to control the nanotube dimensions of other conductive polymers such as polypyrrole and poly(3-hexylthiophene).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja068924v | DOI Listing |
BMC Oral Health
January 2025
Professor of Conservative Dentistry, Faculty of Dentistry, Cairo University, Giza, Egypt.
Background: Minimally invasive dentistry is now becoming the forefront of restorative dentistry, involving less traumatic treatment protocols, conservation of tooth structure and surrounding tissues, enhancing the long-term survivability of treated teeth, and improving the overall quality of life for patients.
Objective: The current case report was conducted to evaluate acquiring deep subgingival interproximal carious lesions by the mean of thermacut bur gingivectomy, in terms of patient satisfaction through pain evaluation, Bleeding on Probing, Pocket Depth, Crestal Bone Level evaluation, and restoration evaluation using modified USPHS criteria.
Material And Methods: A patient with a deep proximal cavity in the posterior tooth was thoroughly examined and underwent Thermacut Bur Gingivectomy (TBG) after caries removal followed by direct resin composite restoration of the prepared cavity.
Clin Oral Investig
January 2025
Faculty of Dentistry, Department of Restorative Dentistry, Çanakkale Onsekiz Mart University, Çanakkale, 17100, Turkey.
Objectives: This study aimed to evaluate the effectiveness of home-use desensitizing agents over an 8-week period by comparing them using different measurement methods.
Methods: A randomized, controlled clinical trial was conducted with 180 individuals aged between 18 and 70 who clinically diagnosed dentin hypersensitivity (DH) in two or more non-adjacent teeth. Subjects who met the inclusion criteria (n = 164) were randomly allocated into five test groups-using Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), Arginine, Novamin, Propolis, and Potassium nitrate-and a control group using standard fluoride toothpaste.
Nat Commun
January 2025
Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
Spin currents have long been suggested as a potential solution to addressing circuit miniaturization challenges in the semiconductor industry. While many semiconducting materials have been extensively explored for spintronic applications, issues regarding device performance, materials stability, and efficient spin current generation at room temperature persist. Nonconjugated paramagnetic radical polymers offer a unique solution to these challenges.
View Article and Find Full Text PDFHeliyon
January 2025
School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
Cellular forces regulate an untold spectrum of living processes, such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we introduce a computational pipeline for force measurement that leverages well-defined, tunable release of a mechanically activated small molecule fluorophore.
View Article and Find Full Text PDFChemphyschem
January 2025
Changchun University of Technology, No. 3000, Beiyuanda Street, Gaoxinbei District, Changchun, Jilin, China, CHINA.
With the rapid advancement of information technology, the need to achieve ultra-high-density data storage has become a pressing necessity. This study synthesized three hyperbranched polyimides (HBPI-TAPP, HBPI-(Zn)TAPP, and HBPI-(Cu)TAPP) by polymerizing 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP), which features a cavity for metal ion coordination, with 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA), to systematically investigate the effect of metal ion species on storage performance. According to the results, memory devices based on HBPI-(Zn)TAPP exhibit volatile SRAM (static random-access memory) characteristics, whereas devices employing HBPI-TAPP and HBPI-(Cu)TAPP demonstrate non-volatile WORM (write-once, read-many) characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!