This research evaluated fermentation characteristics (short-chain fatty acid [SCFA] production, pH, and gas production) resulting from fermentation of glucose-based carbohydrates using canine (n = 3) and human (n = 3) fecal inoculum. Substrates included lyophilized canine ileal digesta containing maltodextrin, gamma-cyclodextrin, high molecular weight (MW) pullulan (MW 100000), or low MW pullulan (MW 6300) obtained from an in vivo experiment. Fermentation for 6 and 10 h with human fecal microflora resulted in higher gas and SCFA production than did canine fecal microflora. High MW pullulan fermentation resulted in the highest (p < 0.05) gas production and lowest (p < 0.05) pH for both dogs and humans. Total SCFA production was highest (p < 0.05) for low MW pullulan fermented by canine microflora, and for gamma-cyclodextrin, high MW pullulan, and low MW pullulan fermented by human microflora. Differences were noted in fermentation characteristics of substrates present in ileal digesta.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17450390601117017DOI Listing

Publication Analysis

Top Keywords

fermentation characteristics
12
human fecal
12
low pullulan
12
canine human
8
gas production
8
ileal digesta
8
gamma-cyclodextrin high
8
fecal microflora
8
scfa production
8
high pullulan
8

Similar Publications

The systemic evolutionary theory of the origin of cancer (SETOC): an update.

Mol Med

January 2025

Association for Systems Science, Via S. Stefano, 42, I-75100, Matera, Italy.

The Systemic Evolutionary Theory of the Origin of Cancer (SETOC) is a recently proposed theory founded on two primary principles: the cooperative and endosymbiotic process of cell evolution as described by Lynn Margulis, and the integration of complex systems operating in eukaryotic cells, which is a core concept in systems biology. The SETOC proposes that malignant transformation occurs when cells undergo a continuous adaptation process in response to long-term injuries, leading to tissue remodeling, chronic inflammation, fibrosis, and ultimately cancer. This process involves a maladaptive response, wherein the 'endosymbiotic contract' between the nuclear-cytoplasmic system (derived from the primordial archaeal cell) and the mitochondrial system (derived from the primordial α-proteobacterium) gradually breaks down.

View Article and Find Full Text PDF

Gut microbial communities and transcriptional profiles of black soldier fly (Hermitia illucens) larvae fed on fermented sericulture waste.

Waste Manag

January 2025

Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China. Electronic address:

Sericulture waste poses significant challenges to industrial and environmental safety. Black soldier fly larvae (BSFL) offer a promising solution for organic waste management by converting it into insect protein. This study aimed to develop a microbial fermented method for utilizing sericulture waste to feed BSFL and explore the underlying mechanisms.

View Article and Find Full Text PDF

This study aim is to elucidate the relationship between the microbial community dynamics and the production of volatile flavor compounds during the fermentation process of bacterial-type i. Using high-throughput sequencing (HTS) and headspace solid-phase microextraction, gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to investigate microbial diversity and volatile compound profiles at different fermentation stages. Spearman correlation analysis was employed to identify potential associations between microbial genera and flavor compounds.

View Article and Find Full Text PDF

Malting quality of barley is a complex characteristic, which is influenced by a combination of interacting traits that are regulated by various genetic and environmental factors. The activities of various enzymes play pivotal roles in determining the malting quality, as they drive the biochemical processes responsible for converting barley saccharides and proteins into fermentable sugars and amino acids during the malting process. In this study, 14 malting barley cultivars were used to investigate the relationship between enzyme activities and malting quality traits.

View Article and Find Full Text PDF

The genus , commonly found in fermented foods, is a significant group of lactic acid bacteria (LAB) with potential probiotic properties. Several strains have been proposed as probiotics due to their biotechnological capabilities. However, a few strains may exhibit opportunistic pathogenic behavior, which restricts the widespread use of all strains in food applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!