A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Robust and computationally efficient superresolution algorithm. | LitMetric

Robust and computationally efficient superresolution algorithm.

J Opt Soc Am A Opt Image Sci Vis

Department of Electrical Engineering, Image Processing and Computer Vision Laboratory, Indian Institute of Technology Madras, Chennai 600036, India.

Published: April 2007

Superresolution is the process of combining information from multiple subpixel-shifted low-resolution images to form a high-resolution image. It works quite well under ideal conditions but deteriorates rapidly with inaccuracies in motion estimates. We model the original high-resolution image as a Markov random field (MRF) with a discontinuity adaptive regularizer. Given the low-resolution observations, an estimate of the superresolved image is obtained by using the iterated conditional modes (ICM) algorithm, which maximizes the local posterior conditional probability sequentially. The proposed method not only preserves edges but also lends robustness to errors in the estimates of motion and blur parameters. We derive theoretically the neighborhood structure for the posterior distribution in the presence of warping, blurring, and downsampling operations and use this to effectively reduce the overall computations. Results are given on synthetic as well as real data to validate our method.

Download full-text PDF

Source
http://dx.doi.org/10.1364/josaa.24.000984DOI Listing

Publication Analysis

Top Keywords

high-resolution image
8
robust computationally
4
computationally efficient
4
efficient superresolution
4
superresolution algorithm
4
algorithm superresolution
4
superresolution process
4
process combining
4
combining multiple
4
multiple subpixel-shifted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!