RB in breast cancer: at the crossroads of tumorigenesis and treatment.

Cell Cycle

Department of Cell Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0521, USA.

Published: March 2007

Cancer is a highly heterogeneous disease, wherein specific determinants modulate disease severity and therapeutic outcomes. In breast cancer, significant effort has been channeled into defining critical genetic effectors of disease behavior. One key molecular determinant is the retinoblastoma tumor suppressor (RB), which is functionally inactivated in the majority of human cancers, and aberrant in nearly half of breast cancers. Deficiency in RB function compromises cell cycle checkpoints, contributes to aggressive tumor proliferation, and is associated with advanced disease. Recent investigation indicates that RB-deficiency has dramatic and disparate effects on the response to therapeutic modalities utilized in the treatment of breast cancer. Loss of RB function promotes inappropriate cell cycle progression during therapeutic challenge. In the context of cytotoxic therapies, this lack of checkpoint function leads to increased sensitivity to the agent. However, RB-deficiency efficiently bypasses the anti-mitogenic function of hormonal therapies and is associated with early disease recurrence following tamoxifen therapy. Thus, RB-pathway status has powerful effects on both tumorigenic proliferation and therapeutic response, and may represent a critical basis for informing breast cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.4161/cc.6.6.3988DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
cell cycle
8
breast
5
disease
5
cancer crossroads
4
crossroads tumorigenesis
4
tumorigenesis treatment
4
cancer
4
treatment cancer
4
cancer highly
4

Similar Publications

GradeDiff-IM: An Ensembles Model-based Grade Classification of Breast Cancer.

Biomed Phys Eng Express

January 2025

School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.

View Article and Find Full Text PDF

Background: Bangladesh and West Bengal, India, are 2 densely populated South Asian neighboring regions with many socioeconomic and cultural similarities. In dealing with breast cancer (BC)-related issues, statistics show that people from these regions are having similar problems and fates. According to the Global Cancer Statistics 2020 and 2012 reports, for BC (particularly female BC), the age-standardized incidence rate is approximately 22 to 25 per 100,000 people, and the age-standardized mortality rate is approximately 11 to 13 per 100,000 for these areas.

View Article and Find Full Text PDF

Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.

View Article and Find Full Text PDF

Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.

View Article and Find Full Text PDF

This study presents a novel approach to modeling breast cancer dynamics, one of the most significant health threats to women worldwide. Utilizing a piecewise mathematical framework, we incorporate both deterministic and stochastic elements of cancer progression. The model is divided into three distinct phases: (1) initial growth, characterized by a constant-order Caputo proportional operator (CPC), (2) intermediate growth, modeled by a variable-order CPC, and (3) advanced stages, capturing stochastic fluctuations in cancer cell populations using a stochastic operator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!