Beta-cell apoptosis appears to represent a key event in the pathogenesis of type 1 diabetes. Previous studies have demonstrated that administration of the serine proteinase inhibitor alpha1-antitrypsin (AAT) prevents type 1 diabetes development in NOD mice and prolongs islet allograft survival in rodents; yet the mechanisms underlying this therapeutic benefit remain largely unclear. Herein we describe novel findings indicating that AAT significantly reduces cytokine- and streptozotocin (STZ)-induced beta-cell apoptosis. Specifically, strong antiapoptotic activities for AAT (Prolastin, human) were observed when murine insulinoma cells (MIN6) were exposed to tumor necrosis factor-alpha. In a second model system involving STZ-induced beta-cell apoptosis, treatment of MIN6 cells with AAT similarly induced a significant increase in cellular viability and a reduction in apoptosis. Importantly, in both model systems, treatment with AAT completely abolished induced caspase-3 activity. In terms of its activities in vivo, treatment of C57BL/6 mice with AAT prevented STZ-induced diabetes and, in agreement with the in vitro analyses, supported the concept of a mechanism involving the disruption of beta-cell apoptosis. These results propose a novel biological function for this molecule and suggest it may represent an effective candidate for attempts seeking to prevent or reverse type 1 diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.2337/db06-1273DOI Listing

Publication Analysis

Top Keywords

beta-cell apoptosis
16
type diabetes
12
stz-induced beta-cell
8
apoptosis
6
aat
6
alpha1-antitrypsin protects
4
protects beta-cells
4
beta-cells apoptosis
4
beta-cell
4
apoptosis beta-cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!