Well-documented experimental evidence from both in vitro and in vivo models of stroke strongly supports the critical involvement of NMDA receptor-mediated excitotoxicity in neuronal damage after stroke. Despite this, the results of clinical trials testing NMDA receptor antagonists as neuroprotectants after stroke and brain trauma have been discouraging. Here, we report that in mature cortical cultures, activation of either synaptic or extrasynaptic NR2B-containing NMDA receptors results in excitotoxicity, increasing neuronal apoptosis. In contrast, activation of either synaptic or extrasynaptic NR2A-containing NMDA receptors promotes neuronal survival and exerts a neuroprotective action against both NMDA receptor-mediated and non-NMDA receptor-mediated neuronal damage. A similar opposing action of NR2B and NR2A in mediating cell death and cell survival was also observed in an in vivo rat model of focal ischemic stroke. Moreover, we found that blocking NR2B-mediated cell death was effective in reducing infarct volume only when the receptor antagonist was given before the onset of stroke and not 4.5 h after stroke. In great contrast, activation of NR2A-mediated cell survival signaling with administration of either glycine alone or in the presence of NR2B antagonist significantly attenuated ischemic brain damage even when delivered 4.5 h after stroke onset. Together, the present work provides a molecular basis for the dual roles of NMDA receptors in promoting neuronal survival and mediating neuronal damage and suggests that selective enhancement of NR2A-containing NMDA receptor activation with glycine may constitute a promising therapy for stroke.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6672582 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0116-07.2007 | DOI Listing |
Biochem Soc Trans
January 2025
Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-sección Medicina, Universidad de La Laguna, Tenerife, ES-38071, Spain.
Large conductance voltage- and calcium-activated potassium channels (BK channels) are extensively found throughout the central nervous system and play a crucial role in various neuronal functions. These channels are activated by a combination of cell membrane depolarisation and an increase in intracellular calcium concentration, provided by calcium sources located close to BK. In 2001, Isaacson and Murphy first demonstrated the coupling of BK channels with N-methyl-D-aspartate receptors (NMDAR) in olfactory bulb neurons.
View Article and Find Full Text PDFJ Headache Pain
January 2025
Department of Neurology, University of Utah, 383 Colorow Drive, Salt Lake City, UT, 84108, USA.
A key unanswered question in migraine neurobiology concerns the mechanisms that make the brain of migraineurs susceptible to cortical spreading depression (CSD, a spreading depolarization that underlies migraine aura and may trigger the migraine pain mechanisms). Important insights into this question can be obtained by studying the mechanisms of facilitation of CSD initiation in genetic mouse models of the disease. These models, all generated from families with hereditary migraine, allow the investigation of the functional consequences of disease-causing mutations at the molecular, cellular, synaptic and neural circuit levels.
View Article and Find Full Text PDFJ Physiol
January 2025
Université Paris Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France.
Fañanas cells (FCs) are cerebellar glia of unknown function. First described more than a century ago, they have been almost absent from the scientific literature ever since. Here, we combined whole-cell, patch clamp recordings, near-UV laser photolysis, dye-loading and confocal imaging for a first characterization of FCs in terms of their morphology, electrophysiology and glutamate-evoked currents.
View Article and Find Full Text PDFJ Pain Res
January 2025
Department of Pediatrics- Division of Pediatric Oncology, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA.
Introduction: Anti-GD2 immunotherapy has improved outcomes for children with high-risk neuroblastoma (HRNBL). Dinutuximab promotes complement-mediated reaction against disialoganglioside GD2, which is expressed in peripheral nerves and over-expressed in neuroblastoma. Dinutuximab is associated with ≥grade 3 neuropathic pain.
View Article and Find Full Text PDFBiol Psychiatry
January 2025
Institute of Biology Paris-Seine, laboratory Neuroscience Paris-Seine, CNRS, INSERM, Sorbonne Université, UPMC Université Paris 06 F-75005, Paris, France. Electronic address:
Background: The persistence of cocaine-evoked adaptations relies on gene regulations within the reward circuit, especially in the ventral striatum (i.e., nucleus accumbens (NAc)).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!