Despite advances in imaging, understanding the underlying pathways, and clinical translation of animal models of disease there remains an urgent need for therapies that reduce brain damage after stroke and promote functional recovery in patients. Blocking oxidant radicals, reducing matrix metalloproteinase-induced neuronal damage, and use of stem cell therapy have been proposed and tested individually in prior studies. Here we provide a comprehensive integrative management approach to reducing damage and promoting recovery by combining biological therapies targeting these areas. In a rat model of transient cerebral ischemia (middle cerebral artery occlusion) gene delivery vectors were used to overexpress tissue inhibitor of matrix metalloproteinase 1 and 2 (TIMP1 and TIMP2) 3 days before ischemia. After occlusion, autologous bone marrow cells alone or in combination with agents to improve NO bioavailability were administered intraarterially. When infarct size, BrdU incorporation, and motor function recovery were determined in the treatment groups the largest beneficial effect was seen in rats receiving the triple combined therapy, surpassing effects of single or double therapies. Our study highlights the utility of combined drug, gene, and cell therapy in the treatment of stroke.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1805552 | PMC |
http://dx.doi.org/10.1073/pnas.0611112104 | DOI Listing |
Swiss Med Wkly
January 2025
Department of Internal Medicine, Clinic for Medical Oncology and Hematology, Municipal Hospital Zurich Triemli, Zurich, Switzerland.
Introduction: Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a very rare disease, with unique diagnostic challenges and often dismal outcome. There are no widely accepted treatment guidelines available. Lymphoma-like regimens with or without autologous or allogenic transplantation were the cornerstone of most therapeutic concepts.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea.
Background: Interest in biological augmentation for improving bone-tendon interface (BTI) healing after arthroscopic rotator cuff repair (ARCR) is growing. Dermal fibroblasts, known for collagen synthesis similar to tenocytes, have shown effectiveness in BTI healing in chronic rotator cuff tear (RCT) models in rabbits. However, no human clinical trials have been conducted.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Osaka, Japan.
Background/purpose: Bone reconstruction in the maxillofacial region typically relies on autologous bone grafting, which presents challenges, including donor site complications and graft limitations. Recent advances in tissue engineering have identified highly pure and proliferative dedifferentiated fat cells (DFATs) as promising alternatives. Herein, we explored the capacity for osteoblast differentiation and the osteoinductive characteristics of extracellular vesicles derived from DFATs (DFAT-EVs).
View Article and Find Full Text PDFJ Dent Sci
January 2025
Department of Oral Surgery, Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Viet Nam.
Background/purpose: Autologous dentin materials are among the most promising bone substitutes for preventing osseous defects on the distal side of the lower second molar. This study aimed to investigate the effects of autologous demineralized dentin matrix on postoperative complications and wound healing after lower third molar surgery.
Materials And Methods: Thirteen patients with bilateral symmetrical lower third molars participated in this split-mouth randomized clinical trial.
Front Bioeng Biotechnol
January 2025
Hospital of Stomatogy, Jilin University, Changchun, China.
The posterior mandible is the primary area for occlusal function. However, long-term tooth loss in the posterior mandible often leads to rapid absorption of both buccal and lingual trabecular bone plates and subsequent atrophy of the alveolar ridge. This ultimately results in horizontal bone deficiencies that complicate achieving an optimal three-dimensional placement for dental implants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!