Identification of IGF2 signaling through phosphoinositide-3-kinase regulatory subunit 3 as a growth-promoting axis in glioblastoma.

Proc Natl Acad Sci U S A

Department of Tumor Biology and Angiogenesis, Molecular Biology, Biostatistics, and Pathology, Genentech, Inc., South San Francisco, CA 94080, USA.

Published: February 2007

Amplification or overexpression of growth factor receptors is a frequent occurrence in malignant gliomas. Using both expression profiling and in situ hybridization, we identified insulin-like growth factor 2 (IGF2) as a marker for a subset of glioblastomas (GBMs) that lack amplification or overexpression of EGF receptor. Among 165 primary high-grade astrocytomas, 13% of grade IV tumors and 2% of grade III tumors expressed IGF2 mRNA levels >50-fold the sample population median. IGF2-overexpressing tumors frequently displayed PTEN loss, were highly proliferative, exhibited strong staining for phospho-Akt, and belonged to a subclass of GBMs characterized by poor survival. Using a serum-free culture system, we discovered that IGF2 can substitute for EGF to support the growth of GBM-derived neurospheres. The growth-promoting effects of IGF2 were mediated by the insulin-like growth factor receptor 1 and phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3), a regulatory subunit of phosphoinositide 3-kinase that shows genomic gains in some highly proliferative GBM cases. PIK3R3 knockdown inhibited IGF2-induced growth of GBM-derived neurospheres. The current results provide evidence that the IGF2-PIK3R3 signaling axis is involved in promoting the growth of a subclass of highly aggressive human GBMs that lack EGF receptor amplification. Our data underscore the importance of the phosphoinositide 3-kinase/Akt pathway for growth of high-grade gliomas and suggest that multiple molecular alterations that activate this signaling cascade may promote tumorigenesis. Further, these findings highlight the parallels between growth factors or receptors that are overexpressed in GBMs and those that support in vitro growth of tumor-derived stem-like cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1802005PMC
http://dx.doi.org/10.1073/pnas.0611271104DOI Listing

Publication Analysis

Top Keywords

regulatory subunit
12
growth factor
12
growth
9
phosphoinositide-3-kinase regulatory
8
amplification overexpression
8
insulin-like growth
8
gbms lack
8
egf receptor
8
highly proliferative
8
growth gbm-derived
8

Similar Publications

Transcriptome-wide dynamics of mA methylation in ISKNV and Siniperca chuatsi cells infected with ISKNV.

BMC Genomics

January 2025

State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.

Infectious spleen and kidney necrosis virus (ISKNV) is a highly virulent and rapidly transmissible fish virus that poses threats to the aquaculture of a wide variety of freshwater and marine fish. N6-methyladenosine (mA), recognized as a common epigenetic modification of RNA, plays an important regulatory role during viral infection. However, the impact of mA RNA methylation on the pathogenicity of ISKNV remains unexplored.

View Article and Find Full Text PDF

Identification of a distal enhancer of Ucp1 essential for thermogenesis and mitochondrial function in brown fat.

Commun Biol

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.

Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT.

View Article and Find Full Text PDF

miR-92a-3p regulates egg fertilization through ribogenesis in the invasive fall armyworm Spodoptera frugiperda.

Int J Biol Macromol

January 2025

Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, P. Bag No: 2491, H.A. Farm Post Bellary Road, Hebbal, Bangalore 560024, India.

Understanding the epigenetic molecular mechanisms (EMMs) of reproduction is crucial for developing advanced and targeted control strategies for Spodoptera frugiperda. Differential expression analysis revealed 11 known miRNAs with varying expression levels, including nine upregulated and two downregulated miRNAs, in virgin females compared with males. The predictive analysis identified 426 target genes for these miRNAs, with ribogenesis highlighted as a key process in oogenesis and egg fertilization.

View Article and Find Full Text PDF

Background: Diet composition is associated with neurodegenerative disease risk including Alzheimer's Disease (AD). The adverse effects of Western-style diets may be moderated, in part, by systemic as well as central inflammation, whereas the neuroprotective effects of Mediterranean diets may work through mechanisms that promote anti-inflammatory phenotypes. Systemic inflammation also may induce insulin resistance, another risk factor for AD.

View Article and Find Full Text PDF

An IS element-driven antisense RNA attenuates the expression of serotype 2 fimbriae and the cytotoxicity of .

Emerg Microbes Infect

January 2025

Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, F-59000 Lille, France.

Insertion sequences (IS) represent mobile genetic elements that have been shown to be associated with bacterial evolution and adaptation due to their effects on genome plasticity. In , the causative agent of whooping cough, the numerous IS elements induce genomic rearrangements and contribute to the diversity of the global population. Previously, we have shown that the majority of IS-specific endogenous promoters induce the synthesis of alternative transcripts and thereby affect the transcriptional landscape of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!