Plasmacytoid dendritic cells (pDCs) play a central role in innate and adaptive immune responses against viral infections. pDCs secrete type I IFNs and proinflammatory cytokines upon stimulation by either TLR7 or TLR9. Throughout the course of HIV infection, the production of type-I IFNs is profoundly impaired, and total pDC cell counts in peripheral blood correlates inversely with viral load and positively with CD4(+) T cell count. The origin of these defects is unclear. pDCs express CD4, CCR5, and CXCR4, the primary receptor and coreceptors, respectively, for the HIV envelope; yet little is known concerning the effects of the viral envelope on these cells. Here, we show that exposure of pDCs to gp120 results in the suppression of activation of these cells. This suppression is specific for TLR9-mediated responses, because TLR7-mediated responses are unaffected by gp120. gp120 also suppressed TLR9-mediated induction of proinflammatory cytokines and expression of CD83, a marker of DC activation. Finally, gp120 suppressed pDC-induced cytolytic activity of natural killer cells. Taken together, these data demonstrate that the direct interaction of HIV-1 gp120 with pDCs interferes with TLR9 activation resulting in a decreased ability of pDCs to secrete antiviral and inflammatory factors that play a central role in initiating host immune responses against invading pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1805537PMC
http://dx.doi.org/10.1073/pnas.0611353104DOI Listing

Publication Analysis

Top Keywords

hiv-1 gp120
8
plasmacytoid dendritic
8
dendritic cells
8
play central
8
central role
8
immune responses
8
pdcs secrete
8
proinflammatory cytokines
8
gp120 suppressed
8
pdcs
6

Similar Publications

Microvirin is a lectin molecule known to have monovalent interaction with glycoprotein gp120. A previously reported high-resolution structural analysis defines the mannobiose-binding cavity of Microvirin. Nonetheless, structure does not directly define the energetics of binding contributions of protein contact residues.

View Article and Find Full Text PDF

To study the neuronal protective effect and its potential mechanism of C16 against gp120-induced cognitive impairment in vitro and in vivo. The NORT method was used to evaluate the short-term memory abilities of rats, the morphological changes in hippocampus were observed by Nissl staining. Cell viability and damage degree were detected by MTT and LDH.

View Article and Find Full Text PDF

p62 Binding to Protein Kinase C Regulates HIV-1 gp120 V3 Loop Induced Microglial Inflammation.

Inflammation

December 2024

Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China.

The main pathogenic mechanism of HIV-associated neurocognitive disorders (HAND) is neuronal apoptosis induced by inflammatory mediators, in which microglial inflammation plays a crucial role. However, the exact pathogenic mechanism remains unclear. Previous studies have shown that the HIV-1 gp120 V3 loop can trigger inflammation in CHME-5 microglia.

View Article and Find Full Text PDF

Two Disaccharide-Bearing Polyethers, K-41B and K-41Bm, Potently Inhibit HIV-1 via Mechanisms Different from That of Their Precursor Polyether, K-41A.

Curr Issues Mol Biol

November 2024

Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning 530021, China.

The screening of novel antiviral agents from marine microorganisms is an important strategy for new drug development. Our previous study found that polyether K-41A and its analog K-41Am, derived from a marine Streptomyces strain, exhibit anti-HIV activity by suppressing the activities of HIV-1 reverse transcriptase (RT) and its integrase (IN). Among the K-41A derivatives, two disaccharide-bearing polyethers-K-41B and K-41Bm-were found to have potent anti-HIV-1 activity in vitro.

View Article and Find Full Text PDF

A multidonor class of highly glycan-dependent HIV-1 gp120-gp41 interface-targeting broadly neutralizing antibodies.

Cell Rep

December 2024

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA. Electronic address:

Antibodies that target the gp120-gp41 interface of the HIV-1 envelope (Env) trimer comprise a commonly elicited category of broadly neutralizing antibodies (bNAbs). Here, we isolate and characterize VRC44, a bNAb lineage with up to 52% neutralization breadth. The cryoelectron microscopy (cryo-EM) structure of antibody VRC44.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!