Chromatin remodeling complexes (remodelers) are large, multisubunit macromolecular assemblies that use ATP hydrolysis to alter the structure and positioning of nucleosomes. The mechanisms proposed for remodeler action on nucleosomes are diverse, and require structural evaluation and insights. Previous reconstructions of remodelers using electron microscopy revealed interesting features, but also significant discrepancies, prompting new approaches. Here, we use the orthogonal tilt reconstruction method, which is well suited for heterogeneous samples, to provide a reconstruction of the yeast RSC (remodel the structure of chromatin) complex. Two interesting features are revealed: first, we observe a deep central cavity within RSC, displaying a remarkable surface complementarity for the nucleosome. Second, we are able to visualize two distinct RSC conformers, revealing a major conformational change in a large protein "arm," which may shift to further envelop the nucleosome. We present a model of the RSC-nucleosome complex that rationalizes the single molecule results obtained by using optical tweezers and also discuss the mechanistic implications of our structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1820885 | PMC |
http://dx.doi.org/10.1073/pnas.0700706104 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!