Tumor microenvironment: hypoxia and buffer capacity for immunotherapy.

Med Hypotheses

Institute of Immunology, Shandong University, wenhua xilu 44#, Jinan, Shandong province, China.

Published: October 2007

In recent years, significant progress has been made in the study of tumor biology and anti-tumor immunotherapy. However, the cellular and molecular mechanisms of tumor progression still remain obscure. As we know, tumor microenvironment that can directly influence tumor development and prognosis has attracted much attention of large number of immunologists. Accumulated evidence has suggested that tumor microenvironment is in a hypoxic condition, under which immune cells may exhibit distinct functions compared to those under normal oxygen tension. The article we propose here will offer a novel point of view for understanding tumor microenvironment in order to instruct clinical immunotherapy. Just like the pH buffer system in human body, interactions of immune cells in tumor microenvironment may also constitute a buffer system, the balance of which is of great importance during immunotherapy for tumors. However, many protocols for tumor immunotherapy in clinic at present have not taken it into account, so the therapeutic outcome is often disappointing. In the present study, we have demonstrated the effect of Corynebacterium parvum, a well known immune stimulator, on malignant melanoma. Cell ingredients in tumor-infiltrating lymphocytes (TIL) and their anti-tumor effect have been altered when dosage of Corynebacterium parvum is changed. So, to obtain better therapeutic purposes, what we should do first is to detect an index to evaluate immune buffer capacity for the patient during tumor immunotherapy, then to choose appropriate drug doses to augment buffer capacity for their immune buffer system. Taken together, the hypothesis proposed here may help understand the pathogenesis of tumor progression and design more effective strategy for clinical immunotherapy for tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mehy.2006.12.053DOI Listing

Publication Analysis

Top Keywords

tumor microenvironment
20
buffer capacity
12
buffer system
12
tumor
11
tumor progression
8
immune cells
8
clinical immunotherapy
8
immunotherapy tumors
8
tumor immunotherapy
8
corynebacterium parvum
8

Similar Publications

A common digestive system cancer with a dismal prognosis and a high death rate globally is breast cancer (BRCA). BRCA recurrence, metastasis, and medication resistance are all significantly impacted by cancer stem cells (CSCs). However, the relationship between CSCs and the tumor microenvironment in BRCA individuals remains unknown, and this information is critically needed.

View Article and Find Full Text PDF

Identification of fatty acid anabolism patterns to predict prognosis and immunotherapy response in gastric cancer.

Discov Oncol

January 2025

Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.

Gastric cancer (GC), one of the most common and heterogeneous malignancies, is the second leading cause of cancer death worldwide and is closely related to dietary habits. Fatty acid is one of the main nutrients of human beings, which is closely related to diabetes, hypertension and other diseases. However, the correlation between fatty acid metabolism and the development and progression of GC remains largely unknown.

View Article and Find Full Text PDF

SENP3 inhibition suppresses hepatocellular carcinoma progression and improves the efficacy of anti-PD-1 immunotherapy.

Cell Death Differ

January 2025

Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

The importance of SUMOylation in tumorigenesis has received increasing attention, and research on therapeutic agents targeting this pathway has progressed. However, the potential function of SUMOylation during hepatocellular carcinoma (HCC) progression and the underlying molecular mechanisms remain unclear. Here, we identified that SUMO-Specific Peptidase 3 (SENP3) was upregulated in HCC tissues and correlated with a poor prognosis.

View Article and Find Full Text PDF

Oncolytic alphavirus-induced extracellular vesicles counteract the immunosuppressive effect of melanoma-derived extracellular vesicles.

Sci Rep

January 2025

Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, CEP 01246-000, Brazil.

Extracellular vesicles (EVs)-mediated communication by cancer cells contributes towards the pro-tumoral reprogramming of the tumor microenvironment. Viral infection has been observed to alter the biogenesis and cargo of EVs secreted from host cells in the context of infectious biology. However, the impact of oncolytic viruses on the cargo and function of EVs released by cancer cells remains unknown.

View Article and Find Full Text PDF

Metabolic reprogramming is considered one of the hallmarks of cancer in which cancer cells reprogram some of their metabolic cascades, mostly driven by the specific chemical microenvironment in cancer tissues. The altered metabolic pathways are increasingly being considered as potential targets for cancer therapy. In this view, Aldolase A (ALDOA), a key glycolytic enzyme, has been validated as a candidate oncogene in several cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!