Lassa virus (LASV) is responsible for the deaths of thousands of people in West Africa annually. Genetic diversity among LASV strains is the highest among the Arenaviridae and represents a great challenge for vaccine development. Guinea pigs vaccinated with a ML29 reassortant vaccine experienced sterilizing immunity and complete protection when challenged on day 30 either with homologous virus or with the distantly related Nigerian isolate. Simultaneous vaccination-challenge or challenge on day 2 after vaccination also protected 60-100% of the animals against both strains, but without sterilizing immunity. These results indicate that simultaneous replication of ML29 and LASV attenuates the virulence of LASV infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1892204PMC
http://dx.doi.org/10.1016/j.vaccine.2007.02.038DOI Listing

Publication Analysis

Top Keywords

sterilizing immunity
12
ml29 reassortant
8
guinea pigs
8
distantly nigerian
8
lassa virus
8
virus
4
reassortant virus
4
virus protects
4
protects guinea
4
pigs distantly
4

Similar Publications

Broadly neutralizing antibodies (bnAbs) against HIV-1 have been shown to protect from systemic infection. When employing a novel challenge virus that uses HIV-1 Env for entry into target cells during the first replication cycle, but then switches to SIV Env usage, we demonstrated that bnAbs also prevented mucosal infection of the first cells. However, it remained unclear whether antibody Fc-effector functions contribute to this sterilizing immunity.

View Article and Find Full Text PDF

Interferon-gamma (IFNγ) is a pleiotropic cytokine produced by natural killer (NK) cells during the early infection response. IFNγ expression is tightly regulated to mount sterilizing immunity while preventing tissue pathology. Several post-transcriptional effectors dampen IFNγ expression through IFNG mRNA degradation.

View Article and Find Full Text PDF

Tragedy of the commons: the resource struggle during Plasmodium infection.

Trends Parasitol

December 2024

Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA; Department of Microbiology & Immunology, University of Iowa, Iowa City, IA, USA. Electronic address:

Plasmodium spp. have an ancient history with humans, having been described in ancient texts dating back 3500 years ago, which has led to an evolutionary arms race between Plasmodium and humans with Plasmodium successfully subverting durable, sterilizing host immunity. Mechanisms of immune evasion include polymorphism and antigenic variation, as well as dysregulated immune responses, each facilitating transmission and Plasmodium parasite persistence.

View Article and Find Full Text PDF

Global evolutionary dynamics of influenza A virus (IAV) are fundamentally driven by the extent of virus diversity generated, transmitted, and shaped in individual hosts. How vaccination affects the degree of IAV genetic diversity that can be transmitted and expanded in pigs is unknown. To evaluate the effect of vaccination on the transmission of genetically distinct IAV variants and their diversity after transmission in pigs, we examined the whole genome of IAV recovered from the nasal cavities of pigs vaccinated with different influenza immunization regimens after being infected simultaneously by H1N1 and H3N2 IAVs using a seeder pig model.

View Article and Find Full Text PDF

Enhanced mucosal SARS-CoV-2 immunity after heterologous intramuscular mRNA prime/intranasal protein boost vaccination with a combination adjuvant.

Mol Ther

December 2024

Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. Electronic address:

Article Synopsis
  • * Researchers have found that a combination of a nanoemulsion and an RNA-based adjuvant, when used in intranasal vaccination, can enhance both systemic and mucosal immune responses significantly compared to traditional vaccination methods.
  • * The study shows that a strategy of priming with intramuscular mRNA vaccines followed by an intranasal boost can lead to stronger immune responses, particularly in the upper respiratory tract, offering better protection against various SARS-CoV-2 variants.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!