Discovery of the natural killer (NK) T cell-specific ligand, alpha-galactosylceramide (alpha-GalCer) has enabled us to investigate the functional regulation of NKT cells. However, the detailed mechanism of cytokine production by NKT cells remains to be elucidated. Here we evaluated the role of interleukin (IL)-4 in the production of interferon (IFN)-gamma from NKT cells using IL-4-deficient C57BL/6 mice (IL-4(-/-) mice). Administration of alpha-GalCer into wild-type C57BL/6 mice caused the production of both IFN-gamma and IL-4 in serum or cytoplasm within 4 h of the injection. Unexpectedly, however, IL-4(-/-) mice-derived NKT cells did not produce any IFN-gamma at early phase after primary stimulation with alpha-GalCer. Because NKT cells from IL-4(-/-) mice produced IFN-gamma when they were stimulated secondarily with alpha-GalCer in vitro for 72 h, NKT cells from IL-4(-/-) mice were not completely genetically deficient for IFN-gamma production. To elucidate which cells, NKT cells or dendritic cells (DC), were responsible for the deficiency in IFN-gamma production in IL-4(-/-) mice, we carried out an add-back experiment using purified NKT cells and DC, which were prepared from either wild-type mice or IL-4(-/-) mice. NKT cells from wild-type mice produced IFN-gamma when they were cocultured with DC prepared from either wild-type or IL-4(-/-) mice, whereas NKT cells from IL-4(-/-) mice did not produce IFN-gamma by coculturing with DC from either wild-type or IL-4(-/-) mice. These results indicate that NKT cells, not DC, were responsible for the deficiency in IFN-gamma production in IL-4(-/-) mice. Thus, IL-4 is required for the activation of NKT cells to produce IFN-gamma in response to alpha-GalCer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11159288PMC
http://dx.doi.org/10.1111/j.1349-7006.2007.00451.xDOI Listing

Publication Analysis

Top Keywords

nkt cells
48
il-4-/- mice
36
cells
15
mice
14
nkt
12
produce ifn-gamma
12
cells il-4-/-
12
ifn-gamma production
12
ifn-gamma
10
il-4-/-
10

Similar Publications

The clinical potential of current chimeric antigen receptor-engineered T (CAR-T) cell therapy is hampered by its autologous nature that poses considerable challenges in manufacturing, costs and patient selection. This spurs demand for off-the-shelf therapies. Here we introduce an ex vivo feeder-free culture method to differentiate gene-engineered hematopoietic stem and progenitor (HSP) cells into allogeneic invariant natural killer T (NKT) cells and their CAR-armed derivatives (CAR-NKT cells).

View Article and Find Full Text PDF

Hematopoietic stem cell transplantation (HSCT) is widely used to treat patients with life-threatening hematologic and immune system disorders. Current nontargeted chemo-/radiotherapy conditioning regimens cause tissue injury and induce an array of immediate and delayed adverse effects, limiting the application of this life-saving treatment. The growing demand to replace canonical conditioning regimens has led to the development of alternative approaches, such as antibody-drug conjugates, naked antibodies, and CAR T cells.

View Article and Find Full Text PDF

Natural killer T cells (NKTs) are a promising platform for cancer immunotherapy, but few genes involved in regulation of NKT therapeutic activity have been identified. To find regulators of NKT functional fitness, we developed a CRISPR/Cas9-based mutagenesis screen that employs a guide RNA (gRNA) library targeting 1,118 immune-related genes. Unmodified NKTs and NKTs expressing a GD2-specific chimeric antigen receptor (GD2.

View Article and Find Full Text PDF

Breast cancer is the most common malignant tumor in the world, and its metastasis is the main cause of death in breast cancer patients. However, the differences between primary breast cancer tissue and lymphatic node, bone, and brain metastases at the single-cell level are not fully understood. We analyzed the microenvironment heterogeneity in samples of primary breast cancer (n = 4), breast cancer lymphatic node metastasis (n = 4), breast cancer brain metastasis (n = 3), and breast cancer bone metastasis (n = 2) using single-cell sequencing data from the GEO database.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) represents a primary brain tumor that is widely prevalent, and clinical drugs available for its treatment exhibit varying degrees of resistance. Nootkatone (NKT) is a functional sesquiterpene sourced from traditional Chinese medicine --Alpinia Oxyphylla Miq and has been reported to have a diverse range of pharmacological properties. However, it remains unknown whether there are effects of NKT on GBM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!