Vibrio cholerae is an aetiological agent of cholera that inhabits marine and estuarine environments. It can survive harsh environments by entering the viable but non-culturable (VBNC) state, but the related changes in gene expression have not been described. Here, we experimentally induced the VBNC state in V. cholerae O1, by incubation in artificial seawater at 4 degrees C. Bacterial cells that were incubated for 70 days retained their membrane integrity and were pathogenic, colonizing the gut of iron-dextran-treated mice, even though they formed no colonies on tryptic soy agar (TSA) or TSA amended with pyruvate. We therefore used this stage of cells as the VBNC bacteria. We compared the global transcription pattern of the VBNC cells with that of stationary-phase cells grown in rich medium. A total of 100 genes were induced by more than fivefold in the VBNC state, and the modulated genes were mostly those responsible for cellular processes. Furthermore, real-time RT-PCR analysis verified the changes in the expression levels, showing that the VC0230 [iron(III) ABC transporter], VC1212 (polB), VC2132 (fliG) and VC2187 (flaC) mRNAs were increased in the non-culturable state. Thus, these genes may be suitable markers for the detection of VBNC V. cholerae. To our knowledge, this is the first report of a comprehensive transcriptome analysis of V. cholerae in the VBNC state. The significance of this gene expression profile compared with those of in vivo isolates and non-stressed bacteria (culturable in vitro) is its potential to provide information about the public health risk from dormant bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1462-2920.2006.01206.xDOI Listing

Publication Analysis

Top Keywords

vbnc state
16
gene expression
12
expression profile
8
vibrio cholerae
8
viable non-culturable
8
non-culturable state
8
vbnc
7
state
6
cholerae
5
profile vibrio
4

Similar Publications

Legionella pneumophila, the causative agent of Legionnaires' disease, employs the Icm/Dot Type IV secretion system (T4SS) to replicate in amoebae and macrophages. The opportunistic pathogen responds to stress by forming 'viable but non-culturable' (VBNC) cells, which cannot be detected by standard cultivation-based techniques. In this study, we document that L.

View Article and Find Full Text PDF

Comparative analyses of persistence traits in O157:H7 strains belonging to different clades including REPEXH01 and REPEXH02 strains.

Front Microbiol

December 2024

Meat Safety and Quality Research Unit, U.S. Department of Agriculture, U.S. Meat Animal Research Center, Clay Center, NE, United States.

Recent application of whole genome sequencing in the investigation of foodborne illness outbreaks has facilitated the identification of Reoccurring, Emerging, or Persistent (REP) bacterial strains that have caused illnesses over extended periods of time. Here, the complete genomes of two O157:H7 (EcO157) outbreak strains belonging to REPEXH01 and REPEXH02, respectively, were sequenced and annotated. Comparative genomics and phenotypic analyses were carried out to identify REP-associated traits.

View Article and Find Full Text PDF

Controlling Listeria monocytogenes and its associated biofilms in the food industry requires various disinfection techniques, including physical, chemical, and biological treatments. Biocides, owing to their ease of use, cost-effectiveness, dissolvability in water, and efficacy against a wide range of microorganisms, are frequently selected options. Nonetheless, concerns have been raised about their efficacy in controlling L.

View Article and Find Full Text PDF

Holistic monitoring of Campylobacter jejuni biofilms with NanoLuc bioluminescence.

Appl Microbiol Biotechnol

December 2024

Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Ljubljana, Slovenia.

Campylobacter jejuni, a major cause of foodborne zoonotic infections worldwide, shows a paradoxical ability to survive despite its susceptibility to environmental and food-processing stressors. This resilience is likely due to the bacterium entering a viable but non-culturable state, often within biofilms, or even initiating biofilm formation as a survival strategy. This study presents an innovative application of NanoLuc bioluminescence to accurately monitor the development of C.

View Article and Find Full Text PDF

Dormancy is an adaptation in which cells reduce their metabolism, transcription, and translation to stay alive under stressful conditions, preserving the capacity to reactivate once the environment reverts to favorable conditions. Dormancy and reactivation of () are closely linked to intracellular residency within macrophages. Our previous work showed that murine macrophages rely on the viable but not cultivable (VBNC-a dormancy phenotype) fungus from active , with striking differences in immunometabolic gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!