Constant flux relation for driven dissipative systems.

Phys Rev Lett

Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

Published: February 2007

Conservation laws constrain the stationary state statistics of driven dissipative systems because the average flux of a conserved quantity between driving and dissipation scales should be constant. This requirement leads to a universal scaling law for flux-measuring correlation functions, which generalizes the 4/5th law of Navier-Stokes turbulence. We demonstrate the utility of this simple idea by deriving new exact scaling relations for models of aggregating particle systems in the fluctuation-dominated regime and for energy and wave action cascades in models of strong wave turbulence.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.98.080601DOI Listing

Publication Analysis

Top Keywords

driven dissipative
8
dissipative systems
8
constant flux
4
flux relation
4
relation driven
4
systems conservation
4
conservation laws
4
laws constrain
4
constrain stationary
4
stationary state
4

Similar Publications

Glucose metabolism has been studied extensively, but the role of glucose-derived excretory glycerol remains unclear. Here we show that hypoxia induces NADH accumulation to promote glycerol excretion and this pathway consumes NADH continuously, thus attenuating its accumulation and reductive stress. Aldolase B accounts for glycerol biosynthesis by forming a complex with glycerol 3-phosphate dehydrogenases GPD1 and GPD1L.

View Article and Find Full Text PDF

High temperature QDs organization and re-crystallization in glass supported MgO QDs doped PMMA film.

Sci Rep

January 2025

Condensed Matter Physics & Nanoscience Research Laboratory, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, U.P, India.

Article Synopsis
  • The study focuses on creating composite films of poly (methylmethacrylate) (PMMA) blended with magnesium oxide quantum dots (MgO QDs) at varying concentrations, and the films were annealed at 130°C for different durations to observe changes in their properties.
  • Analysis revealed that the initial crystallinity of the PMMA films decreased with annealing but slightly improved with the diffusion and coalescence of MgO QDs, leading to the formation of larger clusters that influenced the films' structural properties.
  • The research highlights the significance of temperature and molecular forces in the evolution of the film's morphology and stability, demonstrating unique energy dissipation mechanisms and the complex interplay of inter- and intra
View Article and Find Full Text PDF

New insights into the interactions between the antibiotic enrofloxacin and fish protein by spectroscopic, thermodynamic, and theoretical simulation approaches.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China.

In this study, myofibrillar proteins (MPs) from crucian carp were utilized as a model to investigate the binding mechanism between fish proteins and antibiotic residues. Fluorescence quenching confirmed the static quenching (K = 1.89 × 10 M s, K = 1.

View Article and Find Full Text PDF

Effects of molecular weight of chitosan on its binding ability with OSA starch and oil-water interface behavior of complex-stabilized emulsion.

Int J Biol Macromol

December 2024

School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Vic 3010, Australia. Electronic address:

This work examined the effects of molecular weight (2-15 kDa) and concentration (10-30 mg/mL) of chitosan (CTS) on the binding capacity and interface behavior between octenyl succinic acid sodium starch (OSS) and CTS, as well as their effects on the storage stability of emulsions. The results of the isothermal calorimetry titration demonstrated that OSS and CTS were complexed by electrostatic interaction and spontaneous hydrogen bonding driven by enthalpy (ΔH from -3931 to -7983 cal/mol, ΔS from -38.5 to -49.

View Article and Find Full Text PDF

investigations on hydrodynamic phonon transport: From diffusion to convection.

Int J Heat Mass Transf

March 2024

Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, United States of America.

In classical theory, heat conduction in solids is regarded as a diffusion process driven by a temperature gradient, whereas fluid transport is understood as convection process involving the bulk motion of the liquid or gas. In the framework of theory, which is directly built upon quantum mechanics without relying on measured parameters or phenomenological models, we observed and investigated the fluid-like convective transport of energy carriers in solid heat conduction. Thermal transport, carried by phonons, is simulated in graphite by solving the Boltzmann transport equation using a Monte Carlo algorithm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!