In this Letter we pose the question of whether a many-body quantum system with a full set of conserved quantities can relax to an equilibrium state, and, if it can, what the properties of such a state are. We confirm the relaxation hypothesis through an ab initio numerical investigation of the dynamics of hard-core bosons on a one-dimensional lattice. Further, a natural extension of the Gibbs ensemble to integrable systems results in a theory that is able to predict the mean values of physical observables after relaxation. Finally, we show that our generalized equilibrium carries more memory of the initial conditions than the usual thermodynamic one. This effect may have many experimental consequences, some of which have already been observed in the recent experiment on the nonequilibrium dynamics of one-dimensional hard-core bosons in a harmonic potential [T. Kinoshita et al., Nature (London) 440, 900 (2006)10.1038/nature04693].

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.98.050405DOI Listing

Publication Analysis

Top Keywords

hard-core bosons
12
many-body quantum
8
quantum system
8
relaxation completely
4
completely integrable
4
integrable many-body
4
system initio
4
initio study
4
study dynamics
4
dynamics highly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!