The temperature dependence of the frequency shift and spin-lattice relaxation rate of isolated, nonmagnetic (8)Li impurities implanted in a nearly ferromagnetic host (Pd) are measured by means of beta-detected nuclear magnetic resonance (beta-NMR). The shift is negative, very large, and increases monotonically with decreasing T in proportion to the bulk susceptibility of Pd for T > T* approximately 100 K. Below T*, an additional shift occurs which we attribute to the response of Pd to the defect. The relaxation rate is much slower than expected for the large shift and is linear with T below T*, showing no sign of additional relaxation mechanisms associated with the defect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.98.047601 | DOI Listing |
Alzheimers Dement
December 2024
Illinois Institute of Technology, Chicago, IL, USA.
Background: Elevated iron in brain is a source of free radicals that causes oxidative stress which has been linked to neuropathologies and cognitive impairment among older adults. The aim of this study was to investigate the association of iron levels with transverse relaxation rate, R, and white matter hyperintensities (WMH), independent of the effects of other metals and age-related neuropathologies.
Method: Cerebral hemispheres from 437 older adults participating in the Rush Memory and Aging Project study (Table 1) were imaged ex-vivo using 3T MRI scanners.
Hibernating brown bears, due to a drastic reduction in metabolic rate, show only moderate muscle wasting. Here, we evaluate if ATPase activity of resting skeletal muscle myosin can contribute to this energy sparing. By analyzing single muscle fibers taken from the same bears, either during hibernation or in summer, we find that fibers from hibernating bears have a mild decline in force production and a significant reduction in ATPase activity.
View Article and Find Full Text PDFLight Sci Appl
January 2025
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006, China.
Randomness is an essential resource and plays important roles in various applications ranging from cryptography to simulation of complex systems. Certified randomness from quantum process is ensured to have the element of privacy but usually relies on the device's behavior. To certify randomness without the characterization for device, it is crucial to realize the one-sided device-independent random number generation based on quantum steering, which guarantees security of randomness and relaxes the demands of one party's device.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, Munich 81377, Germany.
Covalent organic frameworks (COFs), crystalline and porous conjugated structures, are of great interest for sustainable energy applications. Organic building blocks in COFs with suitable electronic properties can feature strong optical absorption, whereas the extended crystalline network can establish a band structure enabling long-range coherent transport. This peculiar combination of both molecular and solid-state materials properties makes COFs an interesting platform to study and ultimately utilize photoexcited charge carrier diffusion.
View Article and Find Full Text PDFMater Horiz
January 2025
Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsin-Chu 300044, Taiwan.
The formation of a high-density nanotwinned structure in copper deposits is presently acknowledged as a paramount goal for enhancing the material characteristics of copper. However, the conventional manufacturing processes often involve the incorporation of organic additives, resulting in consequential impurity effects and aging concerns. In this work, we introduce a high-rate approach to fabricate (220)-orientation nanotwinned copper foils in a concentrated methanesulfonate copper solution with mere amount of chloride ions as additives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!