No-slip hydrodynamic boundary condition for hydrophilic particles.

Phys Rev Lett

Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Victoria 3010, Australia.

Published: January 2007

We describe measurement and interpretation of the force acting on a smooth hydrophilic glass particle during rapid (1-100 microm s(-1) approach to, and separation from, a hydrophilic glass plate in viscous concentrated aqueous sucrose solutions (0.001 Pa s

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.98.028305DOI Listing

Publication Analysis

Top Keywords

hydrophilic glass
8
no-slip hydrodynamic
4
hydrodynamic boundary
4
boundary condition
4
condition hydrophilic
4
hydrophilic particles
4
particles describe
4
describe measurement
4
measurement interpretation
4
interpretation force
4

Similar Publications

A collagen-inspired helical protein-mimic has been synthesized via topochemical polymerization of a designed tripeptide monomer. In the monomer crystal, molecules arrange in a head-to-tail manner, forming supramolecular helices. The azide and alkyne of adjacent molecules in the supramolecular helix are proximally preorganized in a ready-to-react arrangement.

View Article and Find Full Text PDF

Recent advancements in polymer materials have enabled the synthesis of bio-based monomers from renewable resources, promoting sustainable alternatives to fossil-based materials. This study presents a novel zwitterionic surfactant, SF, derived from 10-undecenoic acid obtained from castor oil through a four-step reaction, achieving a yield of 78%. SF has a critical micelle concentration (CMC) of 1235 mg/L, slightly higher than the commercial anionic surfactant Rhodacal DS-4 (sodium dodecyl benzene sulfonate), and effectively stabilizes monomer droplets, leading to excellent conversion and stable latex formation.

View Article and Find Full Text PDF

Fabrication of Polyurethane-Polyacrylate Hybrid Latexes with High Organosilicon Content via Phase Inversion Emulsion Polymerization.

Molecules

December 2024

Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

Waterborne polyurethane, with a mechanical strength comparable to solvent-based types, is eco-friendly and safe, using water as a dispersion medium. Polyacrylate excels in film formation and weather resistance but suffers from "hot stickiness and cold brittleness". Merging polyurethane and polyacrylate creates advanced hybrids, while organosilicon enhances properties but is restricted due to hydrolytic crosslinking.

View Article and Find Full Text PDF

Molecular engineering of supramolecular polymer adhesive with confined water and a single crown ether.

Chem Sci

December 2024

Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Centre of Biological Optoelectronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 P. R. China

Here, we report a water-induced supramolecular polymer adhesive formed from confined water and an intrinsically amphiphilic macrocyclic self-assembly in a nanophase-separated structure. The selenium-containing crown ether macrocycle, featuring a strong hydrophilic hydrogen-bond receptor (selenoxide) and a synergistic hydrophobic selenium-substituted crown core, confines water within a segregated, interdigitated architecture. While water molecules typically freeze around 0 °C, the confined water in this supramolecular polymer remains in a liquid-like state down to -80 °C.

View Article and Find Full Text PDF

E-jet printed polycaprolactone with strontium-substituted mesoporous bioactive glass nanoparticles for bone tissue engineering.

Biomater Adv

January 2025

Department of Orthopaedic Surgery, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore 119228, Singapore.

Osteoporosis, characterized by reduced bone mineral density and increased fracture risk, poses a significant health challenge, particularly for aging populations. Systemic treatments often lead to adverse side effects, emphasizing the need for localized solutions. This study introduces a 3D-printed polycaprolactone (PCL) scaffold embedded with strontium-substituted mesoporous bioactive glass nanoparticles (Sr-MBGNPs) and icariin (ICN) for the targeted regeneration of osteoporotic bone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!