Single-layer model of the hexagonal boron nitride nanomesh on the Rh(111) surface.

Phys Rev Lett

Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/165TC, A-1060 Vienna, Austria.

Published: March 2007

An alternative model of the hexagonal boron nitride (h-BN) on nanomesh on the Rh(111) surface is presented. It explains the observed ultraviolet photoelectron spectroscopy spectra and reproduces experimental STM images introducing, instead of two, only one strongly corrugated layer of h-BN covering the whole Rh surface. In order to optimize the geometry of the BN layer we calculate the forces by density functional theory and analyze the interactions in the system. The final geometry is a result of a competition between BN-metal attraction or repulsion and elastic properties of the isolated h-BN layer. The calculated bonding energy is around 0.33 eV per BN molecule with a corrugation close to 0.55 A.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.98.106802DOI Listing

Publication Analysis

Top Keywords

model hexagonal
8
hexagonal boron
8
boron nitride
8
nanomesh rh111
8
rh111 surface
8
single-layer model
4
nitride nanomesh
4
surface alternative
4
alternative model
4
nitride h-bn
4

Similar Publications

Universal Construction of Electrical Insulation and High-Thermal-Conductivity Composites Based on the In Situ Exfoliation of Boron Nitride-Graphene Hybrid Filler.

ACS Appl Mater Interfaces

January 2025

Institute of Soft-matter and Advanced Functional Materials, Gansu Province Carbon New Material Industry Technology Center, School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.

Hexagonal boron nitride (h-BN), with excellent thermal conductivity and insulation capability, has garnered significant attention in the field of electronic thermal management. However, the thermal conductivity of the h-BN-enhanced polymer composite material is far from that expected because of the insurmountable interfacial thermal resistance. In order to realize the high thermal conductivity of polymer composite thermal interface materials, herein, an in situ exfoliation method has been employed to prepare a boron nitride nanosheet-graphene (BNNS-Gr) hybrid filler.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on creating and testing Cobalt-doped zinc oxide nanoparticles as a photocatalyst for degrading the antibiotic ciprofloxacin (CIPF) under visible LED light.
  • It was found that 10% Cobalt-doped ZnO nanoparticles were the most effective, achieving over 99% degradation of CIPF in just 90 minutes, and maintained their efficiency across three cycles of use.
  • The research also optimized the conditions for maximum degradation efficiency using statistical methods and simulated data using Artificial Neural Networks, achieving a strong correlation for the model’s accuracy.
View Article and Find Full Text PDF

Host metabolism balances microbial regulation of bile acid signalling.

Nature

January 2025

Department of Chemistry and Chemical Biology, Boyce Thompson Institute, Cornell University, Ithaca, NY, USA.

Metabolites derived from the intestinal microbiota, including bile acids (BA), extensively modulate vertebrate physiology, including development, metabolism, immune responses and cognitive function. However, to what extent host responses balance the physiological effects of microbiota-derived metabolites remains unclear. Here, using untargeted metabolomics of mouse tissues, we identified a family of BA-methylcysteamine (BA-MCY) conjugates that are abundant in the intestine and dependent on vanin 1 (VNN1), a pantetheinase highly expressed in intestinal tissues.

View Article and Find Full Text PDF

Supercarbon assembly inspired two-dimensional hourglass fermion.

J Chem Phys

January 2025

MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.

By using a tight-binding model, first-principles calculations, and ab initio molecular dynamics simulations, we theoretically demonstrate that the C76-Td-assembled two-dimensional (2D) honeycomb lattice is stable at room temperature and is resistant to mechanical deformation. We disclose that each C76-Td mimics a single carbon atom (geometrically and electronically); hence, it plays the role of one supercarbon. This inspires that the 2D material exhibits an exotic hourglass-like fermion at the Fermi level.

View Article and Find Full Text PDF

In the proposed study, the fatigue analysis of an axisymmetric chiral cellular structure and its modified form, made of stainless steel 316L, is carried out. The main goal of the original structure geometry was to absorb as much mechanical energy as possible with its auxetic behaviour. However, it was found through testing that its response could be improved by modifying the thickness of the struts through the structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!