Excitability in a nonlinear magnetoacoustic resonator.

Phys Rev E Stat Nonlin Soft Matter Phys

Departament de Física Aplicada, Universitat Politècnica de València, Carretera. Natzaret-Oliva s/n, 46730 Grau de Gandia, Spain.

Published: January 2007

We report a nonlinear acoustic system displaying excitability. The considered system is a magnetostrictive material where acoustic waves are parametrically generated. For a set of parameters, the system presents homoclinic and heteroclinic dynamics, whose boundaries define an excitability domain. The excitable behavior is characterized by analyzing the response of the system to different external stimuli. Single-spiking and bursting regimes have been identified. All these neuronlike properties are here predicted to occur in magnetostrictive materials, which are the basis of many smart systems and applications.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.75.015602DOI Listing

Publication Analysis

Top Keywords

excitability nonlinear
4
nonlinear magnetoacoustic
4
magnetoacoustic resonator
4
resonator report
4
report nonlinear
4
nonlinear acoustic
4
system
4
acoustic system
4
system displaying
4
displaying excitability
4

Similar Publications

Microcavity exciton polaritons (polaritons) as part-light part-matter quasiparticles garner considerable attention for Bose-Einstein condensation at elevated temperatures. Recently, halide perovskites have emerged as promising room-temperature polaritonic platforms because of their large exciton binding energies and superior optical properties. However, currently, inducing room-temperature nonequilibrium polariton condensation in perovskite microcavities requires optical pulsed excitations with high excitation densities.

View Article and Find Full Text PDF

Biological applications using multiphoton microscopy increasingly seek a larger field of view while maintaining sufficient temporal sampling to observe dynamic biological processes. Multiphoton imaging also requires high numerical aperture microscope objectives to realize efficient non-linear excitation and collection of fluorescence. This combination of low-magnification and high-numerical aperture poses a challenge for system design.

View Article and Find Full Text PDF

Metal halide perovskites have unique luminescent properties that make them an attractive alternative for high quality light-emitting devices. However, the poor stability of perovskites with many defects and the long cycle time for the preparation of perovskite nanocomposites have hindered their production and application. Here, we prepared the perovskite mesostructures by embedding MAPbBr nanocrystals in the mesopores on the surface of silica nanospheres and mixing the nanospheres with silver nanowires and poly(methyl methacrylate) (PMMA), and further explored their optical properties.

View Article and Find Full Text PDF

Transition metal phosphorus sulfides (MPS), a family of two-dimensional magnetic materials with a van der Waals structure, exhibit promising applications in nonlinear optical devices. The emergence of carrier coherence in MPS is a fascinating topic in coherently controlling the nonlinear effect (or other novel phenomena). Herein, we systematically investigated the third-order nonlinear optical responses of MPS (M = Ni, Fe, Mn) flake suspensions based on spatial self-phase modulation (SSPM) effect.

View Article and Find Full Text PDF

The third harmonic (TH) signals in subwavelength scale devices have a wide range of applications, including nano-laser, microscopic imaging, sensing, and so on. However, the limited TH signal intensity still restricts practical applications due to the inherently small nonlinear coefficient in material and relatively weak confinement of the pump electromagnetic field. Here, we present the enhancement of TH signals in the isotropic Si nanosphere and the Au core/Si shell nanosphere exhibiting anapole mode excited by tightly focused radially polarized beams.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!