Recently identified GPCRs, GPR109a and GPR109b, the high and low affinity receptors for niacin, may represent good targets for the development of HDL elevating drugs for the treatment of atherosclerosis. Acifran, an agonist of both receptors, has been tested in human subjects, yet until recently very few analogs had been reported. We describe a series of acifran analogs prepared using newly developed synthetic pathways and evaluated as agonists for GPR109a and GPR109b, resulting in identification of compounds with improved activity at these receptors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm070022x | DOI Listing |
Int J Mol Sci
November 2022
Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA.
Previous research has indicated that various metabolites belonging to phenolic acids (PAs), produced by gut microflora through the breakdown of polyphenols, help in promoting bone development and protecting bone from degeneration. Results have also suggested that G-protein-coupled receptor 109A (GPR109A) functions as a receptor for those specific PAs such as hippuric acid (HA) and 3-(3-hydroxyphenyl) propionic acid (3-3-PPA). Indeed, HA has a molecular structural similarity with nicotinic acid (niacin) which has been shown previously to bind to GPR109A receptor and to mediate antilipolytic effects; however, the binding pocket and the structural nature of the interaction remain to be recognized.
View Article and Find Full Text PDFJ Mol Model
July 2022
Arkansas Children's Nutrition Center, 15 Children's Way, Little Rock, AR, 72202, USA.
Acifran is a well-known agonist of G-protein-coupled receptor protein, namely GPR109A. Acifran is primarily used in the treatment of dyslipidemia, myocardial infractions, and atherosclerosis in humans due to its lower vascular and metabolic side effects. However, experimental and computational studies on interaction sites of acifran with GPR proteins (GPR109A and GPR109B) are lacking.
View Article and Find Full Text PDFBioinform Biol Insights
November 2021
Arkansas Children's Nutrition Center, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
The transmembrane G-protein coupled receptor GPR109A has been previously shown to function as a receptor for niacin in mediating antilipolytic effects. Although administration of high doses of niacin has shown beneficial effects on lipid metabolism, however, it is often accompanied by disturbing side effects such as flushing, liver damage, glucose intolerance, or gastrointestinal problems. Thus, it is important to understand niacin-GPR109A interactions, which can be beneficial for the development of alternate drugs having antilipolytic effects with less or no side effects.
View Article and Find Full Text PDFBMC Pulm Med
November 2021
Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, The People's Republic of China.
Background: Asthma is a heterogeneous disease that can be divided into four inflammatory phenotypes: eosinophilic asthma (EA), neutrophilic asthma (NA), mixed granulocytic asthma (MGA), and paucigranulocytic asthma (PGA). While research has mainly focused on EA and NA, the understanding of PGA is limited. In this study, we aimed to identify underlying mechanisms and hub genes of PGA.
View Article and Find Full Text PDFTrends Endocrinol Metab
March 2017
Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany; Medical Faculty, University of Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany. Electronic address:
Lactic acid, the ketone body 3-hydroxy-butyric acid, also known as β-hydroxybutyrate, and the β-oxidation intermediate 3-hydroxy-octanoic acid are hydroxy-carboxylic acids (HCAs) that serve as intermediates of energy metabolism. However, they also regulate cellular functions, in part by directly activating the G protein-coupled receptors HCA/GPR81, HCA/GPR109A, and HCA/GPR109B. During the past decade, it has become clear that HCA receptors help to maintain homeostasis under changing metabolic and dietary conditions, by controlling metabolic, immune, and other body functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!