A study was performed to determine the effect of the systemin polypeptide on the bio-protective effect of arbuscular mycorrhizal fungi (AMF) in tomato plants infected with Alternaria solani, Phytophthora infestans or P. parasitica. Before infection, tomato plants were colonized with two different AMF, Glomus fasciculatum or G. clarum. In addition, a group of inoculated plants was treated with systemin, just after emergence. The exogenous application of systemin marginally suppressed the resistance against A. solani leaf blight observed in G. fasciculatum mycorrhizal plants but significantly enhanced it in plants colonized with G. clarum. Systemin induced resistance to P. parasitica in leaves of G. fasciculatum mycorrhizal plants, in which AMF colonization alone was shown to have no protective effect. Conversely, none of the treatments led to resistance to root or stem rots caused by P. infestans or P. parasitica. The above effects did not correlate with changes in the activity levels of beta-1,3-glucanase (BG), chitinase (CHI), peroxidase (PRX), and phenylalanine ammonium lyase (PAL) in leaves of infected plants. However, they corroborated previous reports showing that colonization by AMF can lead to a systemic resistance response against A. solani. Systemic resistance to A. solani was similarly observed in non-mycorrhizal systemin-treated plants, which, in contrast, showed increased susceptibility to P. infestans and P. parasitica. The results indicated that the pattern of systemic disease resistance conferred by mycorrhizal colonization was dependent on the AMF employed and could be altered by the exogenous application of systemin, by means of a still undefined mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00572-007-0122-9 | DOI Listing |
Pestic Biochem Physiol
January 2025
Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China. Electronic address:
Mol Plant Pathol
July 2024
Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland.
Phytophthora species are oomycetes that have evolved a broad spectrum of biological processes and improved strategies to cope with host and environmental challenges. A growing body of evidence indicates that the high pathogen plasticity is based on epigenetic regulation of gene expression linked to Phytophthora's rapid adjustment to endogenous cues and various stresses. As 5mC DNA methylation has not yet been identified in Phytophthora, the reversible processes of acetylation/deacetylation of histone proteins seem to play a pivotal role in the epigenetic control of gene expression in oomycetes.
View Article and Find Full Text PDFJ Gen Appl Microbiol
May 2024
State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Mcrobiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University.
Phytophthora species are highly destructive soilborne oomycetes pathogens that spread through infested soil and water. Ochrobactrum pseudogrignonense NC1 has been shown to inhibit plant parasitic nematodes via volatile organic compounds (VOCs). In this study, we investigated the inhibitory effect of O.
View Article and Find Full Text PDFMol Plant
September 2022
The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, UK. Electronic address:
Species of the genus Phytophthora, the plant killer, cause disease and reduce yields in many crop plants. Although many Resistance to Phytophthora infestans (Rpi) genes effective against potato late blight have been cloned, few have been cloned against other Phytophthora species. Most Rpi genes encode nucleotide-binding domain, leucine-rich repeat-containing (NLR) immune receptor proteins that recognize RXLR (Arg-X-Leu-Arg) effectors.
View Article and Find Full Text PDFPlants (Basel)
March 2022
State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Xianyang 712100, China.
Nonhost resistance refers to resistance of a plant species to all genetic variants of a non-adapted pathogen. Such resistance has the potential to become broad-spectrum and durable crop disease resistance. We previously employed and a forward genetics approach to identify plant mutants susceptible to the nonhost pathogen , which resulted in identification of the T-DNA insertion mutant ().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!