Estrogen and structurally related molecules play critical roles in breast cancer. We reported that resveratrol (50 microM), an estrogen-like phytosterol from grapes, acts in an antiestrogenic manner in breast cancer cells to reduce cell migration and to induce a global and sustained extension of actin structures called filopodia. Herein, we report that resveratrol-induced filopodia formation is time-dependent and concentration-dependent. In contrast to resveratrol at 50 microM, resveratrol at 5 microM acts in a manner similar to estrogen by increasing lamellipodia, as well as cell migration and invasion. Because Rho GTPases regulate the extension of actin structures, we investigated a role for Rac and Cdc42 in estrogen and resveratrol signaling. Our results demonstrate that 50 microM resveratrol decreases Rac and Cdc42 activity, whereas estrogen and 5 microM resveratrol increase Rac activity in breast cancer cells. MDA-MB-231 cells expressing dominant-negative Cdc42 or dominant-negative Rac retain filopodia response to 50 microM resveratrol. Lamellipodia response to 5 microM resveratrol, estrogen, or epidermal growth factor is inhibited in cells expressing dominant-negative Rac, indicating that Rac regulates estrogen and resveratrol (5 microM) signaling to the actin cytoskeleton. These results indicate that signaling to the actin cytoskeleton by low and high concentrations of resveratrol may be differentially regulated by Rac and Cdc42.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1813930PMC
http://dx.doi.org/10.1593/neo.06778DOI Listing

Publication Analysis

Top Keywords

microm resveratrol
20
rac cdc42
16
breast cancer
16
resveratrol microm
16
estrogen resveratrol
12
signaling actin
12
actin cytoskeleton
12
cancer cells
12
resveratrol
10
rac
8

Similar Publications

The effect of three therapeutically used drugs and five polyphenolic compounds on the mechanism of oxidative burst was compared in whole blood and isolated neutrophils at cellular and molecular level. In 10 microM concentration, the compounds investigated decreased the oxidative burst of whole blood in the rank order of potency: N-feruloylserotonin (N-f-5HT) > curcumin (CUR) > quercetin (QUER) > arbutin (ARB) > resveratrol (RES) > dithiaden (DIT) > carvedilol (CARV) > brompheniramine (BPA). The ratio between the percentage inhibition of extracellular versus intracellular chemiluminescence (CL) followed the rank order QUER > N-f-5HT > RES > CUR > DIT and is indicative of the positive effect of the compounds tested against oxidative burst of neutrophils, demonstrating suppression of reactive oxygen species extracellularly with minimal alteration of intracellular reactive oxygen species (ROS).

View Article and Find Full Text PDF

The aim of this work was to evaluate in vitro the genotoxic and/or antigenotoxic effects of resveratrol (RESV) and pterostilbene (PTER) on HepG2 cells. Moreover, additional tests were performed to evaluate early and late apoptosis events induced by the tested stilbenes. RESV and PTER did not show any genotoxic activity.

View Article and Find Full Text PDF

Stilbenes and resveratrol metabolites improve mitochondrial fatty acid oxidation defects in human fibroblasts.

Orphanet J Rare Dis

June 2014

INSERM UMR-S 1124, Université Paris Descartes, UFR Biomédicale des Saints-Pères, 45, rue des Saints-Pères, 75270 Paris cedex 06, France.

Background: Inborn enzyme defects of mitochondrial fatty acid beta-oxidation (FAO) form a large group of genetic disorders associated to variable clinical presentations ranging from life-threatening pediatric manifestations up to milder late onset phenotypes, including myopathy. Very few candidate drugs have been identified in this group of disorders. Resveratrol (RSV) is a natural polyphenol with anti-oxidant and anti-inflammatory effects, recently shown to have beneficial metabolic properties in mice models.

View Article and Find Full Text PDF

Bakuchiol is a promising anti-tumor candidate with resveratrol-like structure. The present study aims to evaluate the inhibition potential of bakuchiol towards UDP-glucuronosyltransferases (UGT) 1A isoforms. An in vitro incubation system using 4-methylumbelliferone (4-MU) glucuronidation was used to evaluate the inhibition capability of bakuchiol towards UGT1A1, 1A3, 1A6, 1A7, 1A8, 1A9 and 1A10.

View Article and Find Full Text PDF

CFTR chloride channel is a molecular target of the natural cancer preventive agent resveratrol.

Pharmazie

September 2013

School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, PR China.

The naturally occurring polyphenol compound resveratrol (RES) has been receiving wide attention because of its variety of health benefits and favourable biological activities. Previous studies have shown that RES could induce intestinal chloride secretion in mouse jejunum and stimulate cAMP-dependent Cl- secretion in T84, primary cultured murine nasal septal and human sinonasal epithelial cells, but the precise molecular target is not clear. We therefore tested the hypothesis that RES may stimulate the activity of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!