Genesis of a fungal non-self recognition repertoire.

PLoS One

Laboratoire de Génétique Moléculaire des Champignons, UMR-5095 Centre National de la Recherche Scientifique (CNRS) et Université Bordeaux 2, Institut de Biochimie et Génétique Cellulaires (IBGC), Bordeaux, France.

Published: March 2007

Conspecific allorecognition, the ability for an organism to discriminate its own cells from those of another individual of the same species, has been developed by many organisms. Allorecognition specificities are determined by highly polymorphic genes. The processes by which this extreme polymorphism is generated remain largely unknown. Fungi are able to form heterokaryons by fusion of somatic cells, and somatic non self-recognition is controlled by heterokaryon incompatibility loci (het loci). Herein, we have analyzed the evolutionary features of the het-d and het-e fungal allorecognition genes. In these het genes, allorecognition specificity is determined by a polymorphic WD-repeat domain. We found that het-d and het-e belong to a large gene family with 10 members that all share the WD-repeat domain and show that repeats of all members of the family undergo concerted evolution. It follows that repeat units are constantly exchanged both within and between members of the gene family. As a consequence, high mutation supply in the repeat domain is ensured due to the high total copy number of repeats. We then show that in each repeat four residues located at the protein/protein interaction surface of the WD-repeat domain are under positive diversifying selection. Diversification of het-d and het-e is thus ensured by high mutation supply, followed by reshuffling of the repeats and positive selection for favourable variants. We also propose that RIP, a fungal specific hypermutation process acting specifically on repeated sequences might further enhance mutation supply. The combination of these evolutionary mechanisms constitutes an original process for generating extensive polymorphism at loci that require rapid diversification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1805685PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000283PLOS

Publication Analysis

Top Keywords

het-d het-e
12
wd-repeat domain
12
mutation supply
12
gene family
8
high mutation
8
ensured high
8
genesis fungal
4
fungal non-self
4
non-self recognition
4
recognition repertoire
4

Similar Publications

In filamentous fungi, allorecognition takes the form of heterokaryon incompatibility, a cell death reaction triggered when genetically distinct hyphae fuse. Heterokaryon incompatibility is controlled by specific loci termed het-loci. In this article, we analyzed the natural variation in one such fungal allorecognition determinant, the het-c heterokaryon incompatibility locus of the filamentous ascomycete Podospora anserina.

View Article and Find Full Text PDF

Distribution and evolution of het gene homologs in the basidiomycota.

Fungal Genet Biol

March 2014

Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden.

In filamentous fungi a system known as somatic incompatibility (SI) governs self/non-self recognition. SI is controlled by a regulatory signaling network involving proteins encoded at the het (heterokaryon incompatible) loci. Despite the wide occurrence of SI, the molecular identity and structure of only a small number of het genes and their products have been characterized in the model fungi Neurospora crassa and Podospora anserina.

View Article and Find Full Text PDF

WD-repeat instability and diversification of the Podospora anserina hnwd non-self recognition gene family.

BMC Evol Biol

May 2010

Laboratoire de Génétique Moléculaire des Champignons, IBGC, UMR 5095 Université Victor Segalen Bordeaux 2, 1 rue Camille Saint-Saëns, Bordeaux Cedex, France.

Background: Genes involved in non-self recognition and host defence are typically capable of rapid diversification and exploit specialized genetic mechanism to that end. Fungi display a non-self recognition phenomenon termed heterokaryon incompatibility that operates when cells of unlike genotype fuse and leads to the cell death of the fusion cell. In the fungus Podospora anserina, three genes controlling this allorecognition process het-d, het-e and het-r are paralogs belonging to the same hnwd gene family.

View Article and Find Full Text PDF

Identification of the het-r vegetative incompatibility gene of Podospora anserina as a member of the fast evolving HNWD gene family.

Curr Genet

February 2009

Laboratoire de Génétique Moléculaire des Champignons, IBGC, UMR5095, Université Victor Segalen Bordeaux2 et CNRS, 1 rue Camille Saint-Saëns, 33077, Bordeaux Cedex, France.

In fungi, vegetative incompatibility is a conspecific non-self recognition mechanism that restricts formation of viable heterokaryons when incompatible alleles of specific het loci interact. In Podospora anserina, three non-allelic incompatibility systems have been genetically defined involving interactions between het-c and het-d, het-c and het-e, het-r and het-v. het-d and het-e are paralogues belonging to the HNWD gene family that encode proteins of the STAND class.

View Article and Find Full Text PDF

Genesis of a fungal non-self recognition repertoire.

PLoS One

March 2007

Laboratoire de Génétique Moléculaire des Champignons, UMR-5095 Centre National de la Recherche Scientifique (CNRS) et Université Bordeaux 2, Institut de Biochimie et Génétique Cellulaires (IBGC), Bordeaux, France.

Conspecific allorecognition, the ability for an organism to discriminate its own cells from those of another individual of the same species, has been developed by many organisms. Allorecognition specificities are determined by highly polymorphic genes. The processes by which this extreme polymorphism is generated remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!