Purpose: Glaucoma is a progressive eye disease that leads to blindness due to loss of retinal ganglion cells (RGCs). There are difficulties in using primary cultures of purified RGC to study this pathophysiology. RGC-5, a transformed not RGC line, expresses several markers characteristic of the RGCs. The aim of this study was to generate a genome-wide gene expression of RGC-5 following serum deprivation and to identify candidate genes that may be involved in the signal transduction pathways.
Methods: Apoptosis in the transformed rat RGC-5 was induced by serum deprivation for 0, 8, 24, 48, and 96 h. Briefly, 400 ng of RNA from each sample was reverse transcribed and labeled with Cy3 dye. Fragmented fluorescent cRNA was mixed with hybridization buffer and incubated at 60 degrees C for 16 h. Labeled cRNA was hybridized to Rat Genome Oligonucleotide Arrays. These arrays contain 22,775 transcripts with one oligonucleotide per transcript (60-mer). Gene expression from scanned images was quantified and analyzed using ArrayVision software. Reproducibility among triplicate arrays was determined by ANOVA statistical analysis. Significant differences in gene expression between apoptotic and nonapoptotic cells were determined based on p-values.
Results: Of the 22,775 transcripts present on the arrays (Agilent rat genome, 60-mer), 713 (8 h), 1,967 (24 h), 1,011 (48 h), and 1,161 (96 h) were differentially expressed relative to the 0 h time point (p-values <0.05). Twenty-three transcripts were common to 8, 24, 48, and 96 h and 130 transcripts were common to the 24, 48, and 96 h time points. The two most highly upregulated genes were Fdft1 and Lgals3 (8 h), C3 and Fcgrt (24 h), C and Lcn2 (48 h), and Mgp and C3 (96 h). A subset of the differentially expressed genes identified in microarray data (Ftl1, C3, C1s, Neu1, Polr2g, Acadm, Nupr1, Gch, Dia1, DNase1, Tgfb2, and Cyr61) were validated using quantitative real time polymerase chain reaction (QRT-PCR). Here we show that complement factor H (CFH), the major inhibitor of the alternative complement pathway is downregulated in serum-deprived RGC-5. CFH protein was detected within RGC-5 cells as well as the rat retina with the aid of immunocytochemistry and confocal microscopy.
Conclusions: This study was undertaken to generate a genome-wide gene expression profile of RGC-5 after serum deprivation, and to identify candidate and novel genes that may be involved in the signal transduction pathways leading to apoptosis. RGC-5 serum deprivation revealed up-and downregulation in gene expression profiles. The data gathered from this study was the first report that the genes identified in microarray data and validated by real-time RT-PCR may play an important role in RGC-5 cell death. Among the validated genes, C3 and C1s showed significant upregulation of the complement component pathway. The results further indicate that components of the complement pathway are present in neurons of the rat retina. The data indicated that complement factors are likely involved in the pathway leading to ganglion cell death in the serum-deprivation paradigm, which may be similar to the mechanism of cell death in glaucoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2645904 | PMC |
iScience
January 2025
Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Aging is accompanied by a decline in neovascularization potential and increased susceptibility to ischemic injury. Here, we confirm the age-related impaired neovascularization following ischemic leg injury and impaired angiogenesis. The age-related deficits in angiogenesis arose primarily from diminished EC proliferation capacity, but not migration or VEGF sensitivity.
View Article and Find Full Text PDFiScience
January 2025
Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
The regulation of gene expression relies on the coordinated action of transcription factors (TFs) at enhancers, including both activator and repressor TFs. We employed deep learning (DL) to dissect HepG2 enhancers into positive (PAR), negative (NAR), and neutral activity regions. Sharpr-MPRA and STARR-seq highlight the dichotomy impact of NARs and PARs on modulating and catalyzing the activity of enhancers, respectively.
View Article and Find Full Text PDFiScience
January 2025
Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK.
The implantation of the mouse blastocyst initiates a complex sequence of tissue remodeling and cell differentiation events required for morphogenesis, during which the extraembryonic primitive endoderm transitions into the visceral endoderm. Through single-cell RNA sequencing of embryos at embryonic day 5.0, shortly after implantation, we reveal that this transition is driven by dynamic signaling activities, notably the upregulation of BMP signaling and a transient increase in Sox7 expression.
View Article and Find Full Text PDFClin Cosmet Investig Dermatol
January 2025
Department of Dermatology, Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People's Republic of China.
Dystrophic epidermolysis bullosa (DEB) is a heterogeneous and rare genetic skin disease caused by mutations in the gene, which encodes Type VII collagen. The absence or dysfunction of Type VII collagen can cause the dense lower layer of the basal membrane zone of the skin to separate from the dermis, leading to blister formation and various complications. In different DEB subtypes, the severity of the phenotype is associated, to some extent, with the outcome of Type VII collagen caused by mutations in the gene, which may be reduced in expression, remarkably reduced, or completely absent.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.
Background: Ankylosing spondylitis (AS) is a chronic autoimmune disease characterized by inflammation of the sacroiliac joints and spine. Cuproptosis is a newly recognized copper-induced cell death mechanism. Our study explored the novel role of cuproptosis-related genes (CRGs) in AS, focusing on immune cell infiltration and molecular clustering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!