Excitation-contraction (E-C) coupling and Ca(2+)-induced Ca(2+) release in smooth and cardiac muscles is mediated by the L-type Ca(2+) channel isoform Ca(v)1.2 and the ryanodine receptor isoform RyR2. Although physical coupling between Ca(v)1.1 and RyR1 in skeletal muscle is well established, it is generally assumed that Ca(v)1.2 and RyR2 do not directly communicate either passively or dynamically during E-C coupling. In the present work, we re-examined this assumption by studying E-C coupling in the detrusor muscle of wild type and Homer1(-/-) mice and by demonstrating a Homer1-mediated dynamic interaction between Ca(v)1.2 and RyR2 using the split green fluorescent protein technique. Deletion of Homer1 in mice (but not of Homer2 or Homer3) resulted in impaired urinary bladder function, which was associated with higher sensitivity of the detrusor muscle to muscarinic stimulation and membrane depolarization. This was not due to an altered expression or function of RyR2 and Ca(v)1.2. Most notably, expression of Ca(v)1.2 and RyR2 tagged with the complementary C- and N-terminal halves of green fluorescent protein and in the presence and absence of Homer1 isoforms revealed that H1a and H1b/c reciprocally modulates a dynamic interaction between Ca(v)1.2 and RyR2 to regulate the intensity of Ca(2+)-induced Ca(2+) release and its dependence on membrane depolarization. These findings define the molecular basis of a "two-state" model of E-C coupling by Ca(v)1.2 and RyR2. In one state, Ca(v)1.2 couples to RyR2 by H1b/c, which results in reduced responsiveness to membrane depolarization and in the other state H1a uncouples Ca(v)1.2 and RyR2 to enhance responsiveness to membrane depolarization. These findings reveal an unexpected and novel mode of interaction and communication between Ca(v)1.2 and RyR2 with important implications for the regulation of smooth and possibly cardiac muscle E-C coupling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M611529200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!