Parametric study of neural gastric electrical stimulation in acute canine models.

IEEE Trans Biomed Eng

Department of Electrical and Computer Engineering, University of Calgary, Calgary, AB T2N IN4, Canada.

Published: March 2007

Manipulation of gastric motility by gastric electrical stimulation (GES) has been suggested as a minimally invasive alternative treatment of gastric motility disorders and obesity. However, only neural GES (NGES) has been successful in invoking gastric contractions. Nevertheless, the relationship between these contractions and the controlling NGES parameters has not been quantified. We aimed at determining the relationship between the electrical energy delivered to the tissue as a function of NGES parameters, and the strength and duration of the resulting invoked gastric contractions. Five healthy mongrel dogs underwent subserosal prepyloric implantation of two NGES electrode pairs. Gastric motility was captured by a force transducer implanted in the vicinity of the distal pair of stimulating electrodes. Custom-designed implantable stimulator delivered NGES with 8-16 V (peak-to-peak) amplitudes, and 60-100% duty cycles. Normalized motility index (MI) was utilized to quantify the contractions recorded from the force transducer. The MI increased with increasing voltage amplitudes. However, it remained remarkably constant across all duty cycles when voltage was held constant. Calculated motility generation efficiency indices (MGEI) indicated that highest energy efficiency for invoked motility was achieved at the lowest duty cycle. The parametric data obtained in the present study can be utilized to optimize the power efficiency of implantable gastric neurostimulators.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2006.888823DOI Listing

Publication Analysis

Top Keywords

gastric motility
12
gastric
8
gastric electrical
8
electrical stimulation
8
gastric contractions
8
nges parameters
8
force transducer
8
duty cycles
8
motility
6
nges
5

Similar Publications

Accurate and timely genetic material replication is essential for preserving genomic integrity. The replication process begins with chromatin licensing and DNA replication factor 1 (CDT1). It has been demonstrated that dysregulated CDT1 expression causes genomic instability, damages DNA, and may even cause cancer.

View Article and Find Full Text PDF

Wogonin suppresses proliferation, invasion and migration in gastric cancer cells via targeting the JAK-STAT3 pathway.

Sci Rep

December 2024

Department of Dermatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, 250011, China.

Wogonin is a compound extracted from the medicinal plant Scutellaria baicalensis Geogi and has been found to exert antitumor activities in a variety of malignancies. However, the molecular mechanisms involved in the anti-gastric cancer (GC) effects of wogonin remain poorly understood. In the present study, we found that wogonin treatment inhibited the proliferation of GC cells, induced apoptosis and G0/G1 cell arrest, and suppressed the migration and invasion of SGC-7901 and BGC-823 cells in vitro.

View Article and Find Full Text PDF

Background: Bariatric surgery is very effective in long-term weight management. The present study was undertaken to investigate the short-term effects of sleeve gastrectomy (SG) and of Roux-en-Y gastric bypass (RYGB) on (a) gastrointestinal (GI) motility, that is gastric emptying and oro-cecal transit time and (b) secretion of regulatory gut peptides and (c) their interrelationship.

Methods: Prospective single-centre study in which we assessed gastric emptying, oro-cecal transit time and gut peptide release in 28 severely obese individuals before and 2, respectively, 12 months after bariatric surgery (either SG or RYGB).

View Article and Find Full Text PDF

Background: This study explored the potential of electrogastrography (EGG) and heart rate variability (HRV) as psychophysiological markers in experimental pain research related to the gut-brain axis. We investigated responses to the experience of pain from the visceral (rectal distension) and somatic (cutaneous heat) pain modalities, with a focus on elucidating sex differences in EGG and HRV responses.

Methods: In a sample of healthy volunteers (29 males, 43 females), EGG and ECG data were collected during a baseline and a pain phase.

View Article and Find Full Text PDF

Background: Detecting and treating stomach cancer requires a comprehensive understanding of how gastric cancer develops and progresses. In this context, efforts have been made to elucidate the regulation of glutamine-fructose-6-phosphate transaminase 1 () and Lysine demethylase 4C () in gastric cancer.

Methods: Bioinformatics was utilized to predict the levels and correlation of and in gastric cancer, followed by determining their expressions via quantitative real-time polymerase chain reaction (qRT-PCR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!