Backward-warping ultrasound reconstruction for improving diagnostic value and registration.

Med Image Comput Comput Assist Interv

Chair for Computer Aided Medical Procedures (CAMP), TU Munich Boltzmannstr. 3, 85748 Garching, Germany.

Published: April 2007

Freehand 3D ultrasound systems acquire sets of B-Mode ultrasound images tagged with position information obtained by a tracking device. For both further processing and clinical use of these ultrasound slice images scattered in space, it is often required to reconstruct them into 3D-rectilinear grid arrays. We propose new efficient methods for this so-called ultrasound spatial compounding using a backward-warping paradigm. They allow to establish 3D-volumes from any scattered freehand ultrasound data with superior quality / speed properties with respect to existing methods. In addition, arbitrary MPR slices can be reconstructed directly from the freehand ultrasound slice set, without the need of an extra volumetric reconstruction step. We qualitatively assess the reconstruction quality and quantitatively compare our compounding method to other algorithms using ultrasound data of the neck and liver. The usefulness of direct MPR reconstruction for multimodal image registration is demonstrated as well.

Download full-text PDF

Source
http://dx.doi.org/10.1007/11866763_92DOI Listing

Publication Analysis

Top Keywords

freehand ultrasound
12
ultrasound slice
8
ultrasound data
8
ultrasound
7
backward-warping ultrasound
4
reconstruction
4
ultrasound reconstruction
4
reconstruction improving
4
improving diagnostic
4
diagnostic registration
4

Similar Publications

Purpose: The aim of this study was to evaluate the feasibility of using patient-specific implants (PSI) for complex shaft corrective osteotomies in multiplanar deformities of long bones in the lower extremities. Additionally, it aimed to investigate the added value of these implants by quantifying surgical accuracy on postoperative CT, comparing their outcomes to two commonly used techniques: 3D virtual visualizations and 3D-printed surgical guides.

Methods: Six tibial and femoral shaft corrective osteotomies were planned and performed on three Thiel embalmed human specimen.

View Article and Find Full Text PDF

Background: Traditional freehand puncture relies on non-real-time computed tomography (CT) images, which significantly affects the accuracy of puncturing targets in the lower lung lobes with respiratory motion. This study aims to assess the safety and feasibility of a teleoperated robotic system and low-dose CT for the accurate real-time puncture of targets in the lungs of live pigs during breathing under fluoroscopic guidance.

Methods: Two puncture methods were analyzed: freehand and robot-assisted.

View Article and Find Full Text PDF

Purpose: This study aims to address the challenging estimation of trajectories from freehand ultrasound examinations by means of registration of automatically generated surface points. Current approaches to inter-sweep point cloud registration can be improved by incorporating heatmap predictions, but practical challenges such as label-sparsity or only partially overlapping coverage of target structures arise when applying realistic examination conditions.

Methods: We propose a pipeline comprising three stages: (1) Utilizing a Free Point Transformer for coarse pre-registration, (2) Introducing HeatReg for further refinement using support point clouds, and (3) Employing instance optimization to enhance predicted displacements.

View Article and Find Full Text PDF

Subject-specific biomechanics influences tendon strains in patients with Achilles tendinopathy.

Sci Rep

January 2025

Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.

The treatment of Achilles tendinopathy is challenging, as 40% of patients do not respond to existing rehabilitation protocols. These protocols neglect individual Achilles tendon (AT) characteristics, which are crucial for healing of the tendon tissue. Although prior studies suggest an optimal strain for AT regeneration (6% tendon strains), it is unclear if current protocols meet this condition.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents a new real-time volumetric free-hand ultrasound imaging system designed to improve 3D imaging for large organs, specifically addressing challenges like long acquisition times and patient movement.
  • The system employs an incremental imaging technique and two tissue segmentation algorithms to enhance feature recognition and visualize spinal anatomy in 3D.
  • Validation tests on various ultrasound models and experiments with scoliosis patients showed promising results, indicating a high correlation with X-ray images and suggesting potential for broader clinical applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!