Surface matching via currents.

Inf Process Med Imaging

CIS, Johns Hopkins University, Baltimore, MD, USA.

Published: April 2007

We present a new method for computing an optimal deformation between two arbitrary surfaces embedded in Euclidean 3-dimensional space. Our main contribution is in building a norm on the space of surfaces via representation by currents of geometric measure theory. Currents are an appropriate choice for representations because they inherit natural transformation properties from differential forms. We impose a Hilbert space structure on currents, whose norm gives a convenient and practical way to define a matching functional. Using this Hilbert space norm, we also derive and implement a surface matching algorithm under the large deformation framework, guaranteeing that the optimal solution is a one-to-one regular map of the entire ambient space. We detail an implementation of this algorithm for triangular meshes and present results on 3D face and medical image data.

Download full-text PDF

Source
http://dx.doi.org/10.1007/11505730_32DOI Listing

Publication Analysis

Top Keywords

surface matching
8
hilbert space
8
space
5
currents
4
matching currents
4
currents method
4
method computing
4
computing optimal
4
optimal deformation
4
deformation arbitrary
4

Similar Publications

Ependymoma (EPN) is a common form of brain tumor in children, often resistant to available cytotoxic therapies. Molecular profiling studies have led to a better understanding of EPN subtypes and revealed a critical role of oncogenes ZFTA-RELA fusion and EPHB2 in supratentorial ependymoma (ST-EPN). However, the immune system's role in tumor progression and response to therapy remains poorly understood.

View Article and Find Full Text PDF

The development of a screener for Cerebral Visual Impairment.

Appl Neuropsychol Child

January 2025

Luxembourg Centre for Educational Testing (LUCET), Faculty of Humanities, Education and Social Sciences, University of Luxembourg, Esch-sur-Alzette, Luxembourg.

This study explored the secondary use of Luxembourg's school monitoring tool for a large-scale screening of Cerebral Visual Impairment (CVI)-related difficulties. 44 items, with and without time constraint, were developed, and pretested among 959 children. All children subsequently participated in an individual evaluation of higher-level visual processing (HLVP) measures related with CVI.

View Article and Find Full Text PDF

Artificial Cephalopod Skins with Switchable Appearance Color.

Macromol Rapid Commun

January 2025

Department of Biological and Bioenergy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.

Cephalopods such as squids, octopuses, and cuttlefishes can change their bodies' color to match the surrounding environments by contracting or expanding the sac just below the surface of the skin. Inspired by this mechanism, artificial cephalopod chromatophores which are prepared by thermoresponsive poly(N-isopropyl acrylamide)-based hydrogel films embedded with black, red, and yellow pigments are presented, they can swell and shrink under temperature stimuli, like the natural chromatophores. The artificial chromatophores embedded with cuttlefish ink are further used to fabricate artificial J.

View Article and Find Full Text PDF

Background: The most common cause of death in those with cystic fibrosis (CF) is respiratory failure due to bronchiectasis resulting from repeated cycles of respiratory infection and inflammation. Protease-activated receptor 1 (PAR1) is a cell surface receptor activated by serine proteases including neutrophil elastase, which is recognised as a potent modulator of inflammation. While PAR1 is known to play an important role in regulating inflammation, nothing is known about any potential role of this receptor in CF pathogenesis.

View Article and Find Full Text PDF

Bioplastics, particularly polyhydroxyalkanoates (PHAs), are emerging as promising alternatives to traditional materials due to their biodegradability. This study focuses on the production of PHAs as bioplastics using effluent from hydrogen production in a two-stage Biohythane Pilot Plant, which provides a low-cost substrate. The aim is to optimize production conditions, with Cupriavidus necator TISTR 1335 being used as the PHA producer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!