In this paper a method to extract cerebral arteries from computed tomographic angiography (CTA) is proposed. Since CTA shows both bone and vessels, the examination of vessels is a difficult task. In the upper part of the brain, the arteries of main interest are not close to bone and can be well segmented out by thresholding and simple connected-component analysis. However in the lower part the separation is challenging due to the spatial closeness of bone and vessels and their overlapping intensity distributions. In this paper a CTA volume is partitioned into two sub-volumes according to the spatial relationship between bone and vessels. In the lower sub-volume, the concerning arteries are extracted by tracking the center line and detecting the border on each cross-section. The proposed tracking method can be characterized by the adaptive properties to the case of cerebral arteries in CTA. These properties improve the tracking continuity with less user-interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/11505730_30 | DOI Listing |
Acta Neurochir (Wien)
January 2025
Department of Neurosurgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, China.
Background: Superficial temporal artery (STA)-middle cerebral artery (MCA) side-to-side microvascular anastomosis can achieve the same clinical effects as traditional STA-MCA end-to-side anastomosis in extracranial-intracranial revascularization surgery, furthermore, STA-MCA side-to-side anastomosis has the lower risk of postoperative cerebral hyperperfusion syndrome (CHS) and the potential to recruit all scalp arteries as the donor sources via self-regulation. Therefore, STA-MCA side-to-side microvascular anastomosis seems to be a revascularization strategy superior to traditional STA-MCA end-to-side anastomosis. In this study, we presented seven cases in which a STA-MCA side-to-side microvascular anastomosis was performed with a 4-5 mm long arteriotomy using the in-situ intraluminal suturing technique.
View Article and Find Full Text PDFCardiol Rev
January 2025
Department of Internal Medicine, Milton S Hershey Medical Center, Hershey, PA.
Moyamoya disease (MMD) is a vascular disorder characterized by steno-occlusive alterations in cerebral arteries, often resulting in ischemic or hemorrhagic events predominantly affecting the female population and more common in Asian populations. Despite its predominantly neurological manifestations, recent research suggests a potential association between MMD and cardiovascular diseases (CVDs). MMD involves various genetic and environmental factors, with mutations in the RNF213 gene being strongly implicated in disease susceptibility, with histopathological findings revealing intimal lesions and smooth muscle proliferation, contributing to vascular occlusion as well as dysregulation of circulating endothelial and smooth muscle progenitor cells further complicating MMD's pathogenesis.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Neurosurgery, Kepler University Hospital and Johannes Kepler University Linz, Wagner-Jauregg Weg 15, 4020 Linz and Altenbergerstrasse 69, Linz, 4040, Austria.
Accurate rupture risk assessment is essential for optimizing treatment decisions in patients with cerebral aneurysms. While computational fluid dynamics (CFD) has provided critical insights into aneurysmal hemodynamics, most analyses focus on blood flow patterns, neglecting the biomechanical properties of the aneurysm wall. To address this limitation, we applied Fluid-Structure Interaction (FSI) analysis, an integrative approach that simulates the dynamic interplay between hemodynamics and wall mechanics, offering a more comprehensive risk assessment.
View Article and Find Full Text PDFBMJ
January 2025
Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
Objective: To assess whether intra-arterial tenecteplase administered after successful endovascular recanalisation improves outcomes in patients with acute arterial occlusion of the posterior circulation.
Design: Multicentre randomised controlled trial.
Setting: 31 hospitals in China, 24 January 2023 to 24 August 2023.
BMJ Open
December 2024
British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
Introduction: Ischaemic heart disease (IHD) and cerebrovascular disease are leading causes of morbidity and mortality worldwide. Cerebral small vessel disease (CSVD) is a leading cause of dementia and stroke. While coronary small vessel disease (coronary microvascular dysfunction) causes microvascular angina and is associated with increased morbidity and mortality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!