[Role of the Shiga toxin in the hemolytic uremic syndrome].

Medicina (B Aires)

Laboratorio de Fisiopatogenia, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina.

Published: January 2008

In the last years, infection associated with Shiga toxin-producing Escherichia coli (STEC) and subsequent Hemolitic-Uremic Syndrome (HUS) became relevant as a public health since it was considered as one of the most important emergent patogen present in the food contaminated by cattle feces. STEC infection may be asymptomatic or begins with a watery diarrhea that may or may not progress to bloody diarrhea (hemorrhagic colitis) and HUS. In Argentina, HUS is the most common pediatric cause of acute renal insufficiency and the second cause of chronic renal failure. Up to now, STEC infection lacks of known effective treatment strategies that diminish risk of progression to HUS. The mechanisms by which Shiga toxin (Stx) induce HUS may help to find strategies to prevent or ameliorate HUS. In this article, recent progress that has contributed to understanding the disease pathogenesis of STEC is reviewed. New strategies to prevent further uptake of Shiga from the gut, either during the diarrheal phase or once HUS has developed are discussed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

shiga toxin
8
stec infection
8
strategies prevent
8
hus
7
[role shiga
4
toxin hemolytic
4
hemolytic uremic
4
uremic syndrome]
4
syndrome] years
4
years infection
4

Similar Publications

The emergence of antibiotic-resistant microorganisms has made antimicrobial resistance a global issue, and milk is a potential source for the propagation of resistant bacteria causing zoonotic diseases. Subclinical mastitis (SCM) cases, often overlooked and mixed with normal milk in dairy farms, frequently involve , which can spread through contaminated milk. We conducted this study to determine the prevalence of virulence genes, antibiotic resistance genes (ARGs), antimicrobial susceptibility, and the genetic relatedness of multidrug-resistant (MDR) Shiga toxin-producing (STEC) isolated from SCM milk.

View Article and Find Full Text PDF

Enterohemorrhagic (EHEC) is a common pathotype of that causes numerous outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen that is transmitted from animals to humans. Ruminants, particularly cattle, are considered important reservoirs for virulent EHEC strains.

View Article and Find Full Text PDF

The role of the complement system in Shiga toxin-associated hemolytic uremic syndrome.

Pediatr Nephrol

January 2025

Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina.

Background: This research explores complement activation products involvement and risk and protective polymorphisms in the complement alternative pathway genes in Shiga toxin-associated hemolytic uremic syndrome (STEC-HUS) pathogenesis.

Methods: We analyzed the levels of complement activation products, C3a, C5a and soluble C5b-9 (sC5b-9) and plasma concentrations of Factor H (FH) and FH-related protein 1 (FHR-1) in 44 patients with STEC-HUS, 12 children with STEC-positive diarrhea (STEC-D), and 72 healthy controls (HC). STEC-HUS cases were classified as "severe" or "non-severe".

View Article and Find Full Text PDF

Epidemiology of Shiga toxin-producing other than serotype O157:H7 in England, 2016-2023.

J Med Microbiol

January 2025

Field Service - South East and London, UK Health Security Agency, London, UK.

Shiga toxin-producing (STEC) infections are of public health concern as STEC can cause large national foodborne outbreaks of severe gastrointestinal disease, particularly in the young and elderly. In recent years, the implementation of PCR by diagnostic microbiology laboratories has improved the detection of STEC, and there has been an increase in notifications of cases of non-O157 STEC. However, the extent this increase in caseload can be attributed to the improved detection by PCR, or a true increase in non-O157 STEC infections, is unknown.

View Article and Find Full Text PDF

Shiga Toxin: Emerging Producer Strains, Prophylactic Approaches, and Application in Cancer Therapy.

J Cancer Prev

December 2024

Infectious Disease Research Center, Avicenna Institute of Clinical Sciences, Hamadan, IranAvicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.

Shiga toxin-producing is the most prevalent bacterial strain responsible for Shiga toxin-related infections. While Shiga toxin is inherently toxic, it has potential therapeutic applications as a component of anticancer drugs. Despite its association with infections and harmful effects on human health, Shiga toxin is being explored as a viable element in drug delivery systems targeting cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!