Bone marrow transplantation (BMT) under costimulation blockade induces mixed chimerism and tolerance in rodent models. Recent data, predominantly from in vitro studies, suggest that in addition to blocking the CD28 costimulation pathway CTLA4Ig also acts through upregulating the tryptophan-catabolizing enzyme indoleamine-2,3-dioxygenase (IDO). Here we demonstrate that even though CTLA4Ig is critically required for the induction of chimerism and tolerance in a murine model of nonmyeloablative BMT, IDO activity is not. No significant differences were detectable in the kynurenine to tryptophan ratios (indicative of IDO activity) in sera of BMT recipients treated with CTLA4Ig (tolerant group) versus BMT recipients treated without CTLA4Ig (nontolerant group) versus naïve controls. In vivo inhibition of IDO immediately after BMT with CTLA4Ig or several months thereafter did not block achievement of chimerism and tolerance. Thus, IDO does not play a critical role in the induction or maintenance of chimerism and tolerance in a CTLA4Ig-based BMT model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992942PMC
http://dx.doi.org/10.1097/01.tp.0000255594.23445.29DOI Listing

Publication Analysis

Top Keywords

chimerism tolerance
20
ido activity
8
bmt recipients
8
recipients treated
8
treated ctla4ig
8
group versus
8
ctla4ig
6
bmt
6
chimerism
5
tolerance
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!