Objective: To describe the unusual finding of yellow-green-colored bone during routine orbital surgery, to detail its investigation, and to demonstrate its benign nature.
Methods: When green bone was found, specimens were sent for light and fluorescent microscopy, ultraviolet photography, and spectrophotometry.
Results: Yellow-green bone was encountered in 3 patients during orbital tumor excision or orbital fracture repair procedures. The only common cause was prior use of tetracycline during adolescence. All patients had healthy white dentition. In all cases, absence of neoplasia was demonstrated histologically. The bone fluoresced with a bright yellow-green color when exposed to 365-nm ultraviolet light. Histologic analysis demonstrated fluorescence located near the haversian canals. Spectrophotometry revealed absorption at 4 wavelengths specific to tetracycline: 230, 275, 380, and 440 nm.
Conclusions: Fixation of tetracycline and ensuing fluorescence occurs mostly in areas of new bone growth and mineralization. This happens during childhood but also with bone remodeling associated with tumors or fractures. Once mineralized, teeth should therefore not be affected if tetracycline exposure occurs after ages 8 to 10 years. This paucity of external clues can lead to the surprising but innocuous surgical finding of green bone. Careful history and proper investigation can confirm its origin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1001/archopht.125.3.380 | DOI Listing |
Chondroitin sulfate (CS), a glycosaminoglycan, supports health through various physiological functions, including tissue protection, bone growth, and skin aging prevention. It also contributes to anticoagulant or anti-inflammatory processes, with its primary clinical use being osteoarthritis treatment. This study presents the results of the valorization of lipids and CS, both extracted from salmon co-products through enzymatic processes.
View Article and Find Full Text PDFGels
December 2024
Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal.
Three-dimensional (3D) models with improved biomimicry are essential to reduce animal experimentation and drive innovation in tissue engineering. In this study, we investigate the use of alginate-based materials as polymeric inks for 3D bioprinting of osteogenic models using human bone marrow stem/stromal cells (hBMSCs). A composite bioink incorporating alginate, nano-hydroxyapatite (nHA), type I collagen (Col) and hBMSCs was developed and for extrusion-based printing.
View Article and Find Full Text PDFLeuk Lymphoma
December 2024
Leukemia Service, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
For older unfit patients receiving venetoclax-based induction, data on the significance of interim bone marrow biopies (BMBx) findings on clinical outcomes is lacking. We retrospectively evaluated interim BMBx results performed on Cycle 1 days 21-28 of venetoclax-based therapy in 69 adults with myeloid malignancies to determine whether blast clearance was associated with overall survival (OS) and overall response rate (ORR). Median age was 75 years (range 69-78).
View Article and Find Full Text PDFCancer Med
January 2025
Division of Oncology, The Children's Hospitial of Philadelphia, Philadelphia, Pennsylvania, USA.
Background: Single antigen (Ag)-targeted immunotherapies for acute lymphoblastic leukemia (ALL) are highly effective; however, up to 50% of patients relapse after these treatments. Most of these relapses lack target Ag expression, suggesting targeting multiple Ags would be advantageous.
Materials & Methods: The multi-Ag immune responses to ALL induced by transducing cell lines with xenoAgs green fluorescent protein and firefly luciferase was elucidated using flow cytometry, ELISA, and ELISpot assays.
Front Bioeng Biotechnol
December 2024
Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Introduction: Extensive trauma frequently disrupts endometrial regeneration by diminishing endometrial stem cells/progenitor cells, affecting female fertility. While bone marrow mesenchymal stem cell (BMSC) transplantation has been suggested as an approach to address endometrial injury, it comes with certain limitations. Recent advancements in endometrial epithelial organoids (EEOs) have displayed encouraging potential for endometrial regeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!