Mbd2 contributes to DNA methylation-directed repression of the Xist gene.

Mol Cell Biol

Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, United Kingdom.

Published: May 2007

Transcription of the Xist gene triggers X chromosome inactivation in cis and is therefore silenced on the X chromosome that remains active. DNA methylation contributes to this silencing, but the mechanism is unknown. As methylated DNA binding proteins (MBPs) are potential mediators of gene silencing by DNA methylation, we asked whether MBP-deficient cell lines could maintain Xist repression. The absence of Mbd2 caused significant low-level reactivation of Xist, but silencing was restored by exogenous Mbd2. In contrast, deficiencies of Mbd1, MeCP2, and Kaiso had no detectable effect, indicating that MBPs are not functionally redundant at this locus. Xist repression in Mbd2-null cells was hypersensitive to the histone deacetylase inhibitor trichostatin A and to depletion of the DNA methyltransferase Dnmt1. These synergies implicate Mbd2 as a mediator of the DNA methylation signal at this locus. The presence of redundant mechanisms to enforce repression at Xist and other loci is compatible with the hypothesis that "stacking" of imperfect repressive tendencies may be an evolutionary strategy to ensure leakproof gene silencing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1900000PMC
http://dx.doi.org/10.1128/MCB.02204-06DOI Listing

Publication Analysis

Top Keywords

dna methylation
12
repression xist
8
xist gene
8
gene silencing
8
xist repression
8
dna
6
xist
6
mbd2
4
mbd2 contributes
4
contributes dna
4

Similar Publications

Perceived discrimination, recognized as a chronic psychosocial stressor, has adverse consequences on health. DNA methylation (DNAm) may be a potential mechanism by which stressors get embedded into the human body at the molecular level and subsequently affect health outcomes. However, relatively little is known about the effects of perceived discrimination on DNAm.

View Article and Find Full Text PDF

Menstrual effluent cell profiles have potential as noninvasive biomarkers of female reproductive and gynecological health and disease. We used DNA methylation-based cell type deconvolution (methylation cytometry) to identify cell type profiles in self-collected menstrual effluent. During the second day of their menstrual cycle, healthy participants collected menstrual effluent using a vaginal swab, menstrual cup, and pad.

View Article and Find Full Text PDF

Exposure to toxins causes lasting damaging effects on the body. Numerous studies in humans and animals suggest that diet has the potential to modify the epigenome and these modifications can be inherited transgenerationally, but few studies investigate how diet can protect against negative effects of toxins. Potential evidence in the primary literature supports that caloric restriction, high-fat diets, high protein-to-carbohydrate ratios, and dietary supplementation protect against environmental toxins and strengthen these effects on their offspring's epigenome.

View Article and Find Full Text PDF

Aim: We aim to assess association of DNA methylation (DNAm) at birth with total immunoglobulin E (IgE) trajectories from birth to late adolescence and whether such association is ethnicity-specific.

Methods: We examined the association of total IgE trajectories from birth to late adolescence with DNAm at birth in two independent birth cohorts, the Isle of wight birth cohort (IOWBC) in UK ( = 796; White) and the maternal and infant cohort study (MICS) in Taiwan ( = 60; Asian). Biological pathways and methylation quantitative trait loci (methQTL) for associated Cytosine-phosphate-Guanine sites were studied.

View Article and Find Full Text PDF

Background: A recent prospective phase II study (ECOG-ACRIN E2211) demonstrated that MGMT deficiency was associated with a significant response to capecitabine and temozolomide (CAPTEM) in pancreatic neuroendocrine neoplasms (NENs); however, routine MGMT analysis in NENs was not recommended. Our study sought to demonstrate whether loss of MGMT protein expression is associated with improved overall survival (OS) in patients receiving CAPTEM for NENs from various tumor sites.

Materials And Methods: Paraffin-embedded tumor samples were evaluated by immunohistochemistry (IHC) using an MGMT monoclonal antibody.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!