Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microbial amino acid biosynthesis is a proven yet underexploited target of antibiotics. The biosynthesis of methionine in particular has been shown to be susceptible to small-molecule inhibition in fungi. The first committed step in Met biosynthesis is the acylation of homoserine (Hse) by the enzyme homoserine transacetylase (HTA). We have identified the MET2 gene of Cryptococcus neoformans H99 that encodes HTA (CnHTA) by complementation of an Escherichia coli metA mutant that lacks the gene encoding homoserine transsuccinylase (HTS). We cloned, expressed, and purified CnHTA and determined its steady-state kinetic parameters for the acetylation of L-Hse by acetyl coenzyme A. We next constructed a MET2 mutant in C. neoformans H99 and tested its growth behavior in Met-deficient media, confirming the expected Met auxotrophy. Furthermore, we used this mutant in a mouse inhalation model of infection and determined that MET2 is required for virulence. This makes fungal HTA a viable target for new antibiotic discovery. We screened a 1,000-compound library of small molecules for HTA inhibitors and report the identification of the first inhibitor of fungal HTA. This work validates HTA as an attractive drug-susceptible target for new antifungal agent design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855549 | PMC |
http://dx.doi.org/10.1128/AAC.01400-06 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!